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This dialogue is a distillation of a real series of conver-
sations that took place at that most platonic of acade-
mies, the Center for Advanced Studies in the
Behavioral Sciences, between the first and third
authors.\edq1\ The second author had determinist
leanings to begin with and acted as an intermediary.

Determinism, Faithfulness, and Causal
Inference

Narrator: [Meno and Laplace stand in the corridor
of a daycare, observing toddlers at play through a
window.]

Meno: Do you ever wonder how it is that children
manage to learn so many causal relations so suc-
cessfully, so quickly? They make it all seem effort-
less. A 16-month-old of my acquaintance got my
cordless phone to do things I didn’t know it could,
and very speedily I might add.

Laplace: Yes . . . not only do they manage to sidestep
metaphysical questions, they also seem quite able
to make do without randomized controlled exper-
iments and with tiny sample sizes.

Meno: Leaving aside the question of how children
learn for a while, can we agree on some basic prin-
ciples for causal inference by anyone—child,
adult, or scientist?

Laplace: I think so. I think we can both generally
agree that, subject to various caveats, two variables
will not be dependent in probability unless there is
some kind of causal connection present.

Meno: Yes—that’s what I’d call the weak causal
Markov condition. I assume that the kinds of
caveats you have in mind are to restrict this princi-
ple to situations in which a discussion of cause and
effect might be reasonable in the first place?

Laplace: Absolutely. I don’t want to get involved in
discussions of whether X causes 2X or whether the
monthly changes in height of my elder son are
causing the monthly changes in height of my
younger son.

Instead, let’s consider a real, practical, and
indeed, sometimes lifesaving kind of causal infer-
ence—the kind of inference we make in scientific
medicine. From that perspective, a discussion of
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cause and effect starts from the assumption that
there is a population of units (say, patients in a
clinical trial) and a set of treatments (say, drug vs.
placebo). For each potential assignment of a treat-
ment to a unit, there is a well-defined outcome
that we could, in principle, discover by assigning
that treatment to that unit. If we could simply sys-
tematically give all the units each kind of treat-
ment and observe the outcomes, we could
discover which treatments caused particular out-
comes. Causal inference is difficult because we
can usually only find out what would happen to a
particular unit under one treatment. We can’t
observe the counterfactual—what would have
happened if we’d chosen another treatment. We
can’t observe whether for example, a particular
patient would also have recovered if he had taken
the placebo rather than the drug.

Narrator: [See J. Neyman, Sur les applications de la
thar des probabilities aux experiences Agaricales:
Essay des principle, 1923, as excerpted in English
in Dabrowska and Speed, 1990; Rubin, 1974.]

Meno: Why do you say “usually”? Isn’t it logically impos-
sible to see the same unit under two treatments?

Laplace: Well, in some situations it may be reason-
able to assume that the effect of applying the
treatment to the unit is sufficiently short-lived
that we can later apply another treatment to the
same unit and then compare the outcomes. The
effect of applying the second treatment would be
assumed to be the same as if it had been applied
first.

One would typically do this with a set of units
and randomize the order of treatments. For
instance, if you wanted to see if a particular drug
had short-term side effects, you might use a within-
subjects design—give each patient the drug and

then, after a pause, give the patient the placebo
(and vice versa).

On other occasions, we might think that dis-
tinct units were sufficiently similar in all respects
that their outcomes under the same treatment
might be assumed to be identical for practical pur-
poses. We assume, for instance, that a new patient
is similar enough to the patients in our sample so
that the drug will affect the patient in the same
way.

Meno: But, how can you make that assumption with-
out a population of identical twins? Surely, any
such assumption will be untestable; you can’t
escape the fundamental problem of causal infer-
ence so easily.

Laplace: Yes, of course. . . . If you like to drink your
skepticism neat, then we might ask how we know
that the future will conform to the past and, failing
any kind of satisfactory answer, abandon the whole
epistemological roadshow.

I mention these within-subjects or crossover
experimental designs because I think they may be
relevant to what our toddlers are doing.

Meno: Let’s come back to that, but first I want to fol-
low up on the weak causal Markov condition. How
precisely do you see it as justifying causal infer-
ence in your medical example?

Laplace: If there is dependence between the treat-
ment assignment and the outcome of the experi-
ment, then according to the weak causal Markov
condition, (a) treatment is causing outcome, (b)
outcome is causing treatment, or there is a com-
mon cause of outcome and treatment . . . (or some
combination thereof) (Figure 13-1).

Meno: I see, and if treatment were randomized, then
that means that (b) and (c) are ruled out because
the treatment a patient receives is determined by
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FIGURE 13-1 (a) Treatment causes outcome; (b) outcome causes treatment; (c) treatment
and outcome have a common cause.
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210 CAUSATION AND PROBABILITY

the randomizer (e.g. the flip of a coin) rather than
the patient’s (potential) response to the drug or any
common cause (e.g., the doctor’s beliefs about the
patient).

Laplace: Yes—in fact, if there is a time order (i.e., out-
come does not exist) prior to the treatment being
assigned, then we might rule out (b) a priori, but
randomization is required to eliminate (c) as a pos-
sibility.

Meno: When we say dependence, what do we mean?
Presumably we don’t mean that the outcome is
always entirely determined by the treatment?

Laplace: The case in which outcome is determined
by treatment is an important special case, and we
return to it in a minute, but in describing the weak
causal Markov condition we have in mind proba-
bilistic dependence: The distribution of outcomes
in the treatment group and in the control group
are different. Naturally, this only makes sense if we
have some population or hypothetical population
of units.

Meno: I see, so this condition is only supposed to
apply to causation between variables, not between
individual events.

So we agree that, subject to certain caveats,
dependence, whether probabilistic or deterministic,
implies the presence of a causal connection. What
about the reverse? Suppose that we do not observe
any dependence between two variables, what may
we then conclude? Is it reasonable to conclude that
treatment does not cause the outcome?

Laplace: That assumption is an instance of the
assumption known as the causal faithfulness con-
dition. But, here the way is less straightforward.
For instance, suppose that we give a group of
patients a treatment to reduce the amount of
insulin in the body (e.g., by changing it into some
other form), but that the body responds by gener-
ating additional insulin, exactly matching the
amount removed by the drug.

Meno: I see. In the situation you describe insulin
level remains unchanged regardless of whether
the patient has taken the drug or the placebo, so
we might think that the drug had no causal effect.
However, if we were able to prevent the body from
generating additional insulin, then the drug would
have an effect?

Laplace: Yes. For instance, it would have an effect in
a population of diabetics. This is an instance of the
point made about causal effects defined relative to
a comparison of two (counterfactual) outcomes
corresponding to different treatments. The fact
that an intervention does not change any individ-
ual outcome does not mean that in the context of
a second intervention (e.g., destroying the body’s
capability to produce insulin) the intervention will
not change any outcomes.

Meno: But, is this a real problem? Within the popu-
lation of nondiabetic patient treatments, the drug
would, in fact, have no effect on the outcome for
any individual, so for practical purposes, it is just as
if it had no causal influence at all.

Laplace: Agreed. However, such cases may present
problems if we want accurate representations of
causal systems. These representations are useful
because they allow us to say not only what has
happened or even what will happen, but also
what would happen if we made new interven-
tions. For instance, suppose we want to represent
a causal system with a directed graph. If the pres-
ence of a directed path is taken to indicate that
there is an effect, and the graph is intended to
represent the effects of simultaneous interven-
tions on more than one variable, then one is
faced with a choice between a graph that disobeys
the faithfulness condition (e.g., by including an
edge from the drug to the insulin level in the
body) and a graph that is faithful (e.g., by omit-
ting an edge from the drug to insulin level) but
does not correctly predict the results of multiple
interventions.

There are other situations for which the distri-
bution of outcomes may not change under differ-
ent treatments, so that there is no dependence that
may be observed in a randomized experiment, but
at the same time each person’s pair of counterfac-
tual outcomes are different under the different
treatments. For instance, imagine a treatment that
switches a person’s gender. If the treatment and
control groups initially have equal numbers of
men and women, then the proportion of females
in the treatment and control groups will be the
same at the end of the experiment.

Meno: But the treatment would have had a noticeable
effect on the individuals in the treatment group.
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Laplace: That is if you are willing to assume that the
people in the treatment group would not also have
spontaneously switched gender had they been in the
control group. (Isn’t that the kind of assumption you
warned me about?) Also, note that the effect would
only be “evident” if you knew the gender the individ-
ual would have had if untreated. For instance, sup-
pose there is a treatment that has this effect in the
first few days after conception, before it is possible to
determine the child’s gender. In this case, you would
not be able to observe any change; hence, there
would be no way to observe the effect directly.

Meno: I see; so, every individual’s outcome would be
different under treatment and control, yet there
would be no way to discover this from looking at the
distribution of outcomes in treatment and control.

Narrator: For a human population, the ratio of males
to female births is not equal; hence, given a large
enough sample size, one would still be able to
detect the effect.

Meno: These scenarios still seem slightly outlandish.
They appear to me to be like causal illusions: Like
a masterful trompe l’oeil, our initial impressions of
the situation are incorrect, but on further inspec-
tion we can see what is really going on. Might we
not agree that, absent other information, we might
adopt as a working hypothesis that the absence
of dependence implies the absence of a causal
relationship?

Laplace: I’m fairly comfortable with that. There are
technical arguments that may be advanced for
such a principle: If there is independence between
treatment and outcome, although treatment
causes outcome, then several causal pathways
must “cancel out,” and this is unlikely to happen
by chance. However, there is one situation that
may often arise in which faithfulness routinely
fails. Faithfulness often fails if the causal relation-
ships are deterministic.

Meno: Let me see if I understand the distinction that
you have in mind. In general, if a variable X has a
causal effect on a variable Y, then knowing the
value of X may inform us about the distribution of
possible values of Y, but it will not tell us which
specific value Y will take on. However, if the rela-
tion between X and Y is deterministic, then know-
ing X, we know the value taken on by Y.

Laplace: Exactly. Consider, for example, a room with
an energy-saving lightbulb connected to a light
sensor. The bulb only goes on when the room
grows dark. Now, consider the “treatment” of
opening versus closing the blinds in the room, the
outcome being whether there is light in the room.
It is easy to see that if the causal relationships are
deterministic (i.e., the light sensor and lightbulb
never fail), then pulling down the blind has no
effect on the outcome variable. So, using the prin-
ciple that absence of dependence indicates
absence of causation, we should conclude that
opening the blind has no causal effect on the light
in the room.

Narrator: It is important here that the outcome,
whether the light is on or off, is binary. If we had a
continuous measure of the quality of light in the
room, then the relationships would not be deter-
ministic (clouds, streetlights, etc.).

Meno: Isn’t this simply the scenario of the insulin-
lowering drug mentioned?

Laplace: Yes and no. It is insofar as we have two
mechanisms canceling one another. There is a dif-
ference, however, in that because our outcomes
are determined, there is less room for detecting
change by slightly perturbing the scenario. By con-
trast, if we allowed the relationships to be proba-
bilistic, so that the light sensor and bulb
sometimes failed, then it would be easy to detect
an effect: Simply count the proportion of time
there is light when the blinds are open versus the
proportion of the time there is light when the
blinds are closed. If the sensor or bulb ever fail,
then the latter proportion must be smaller.

Narrator: This tacitly assumes that the probability of
failure is unrelated to whether the blinds are open
or closed.

Meno: It is unless you happen to do the experiment
in an environment with permanent sunshine or
darkness, such as the poles or anywhere on
Mercury. I see you are arguing that causal relation-
ships that are not deterministic are more likely to
obey the causal faithfulness condition. Ironically,
the “noise” in a probabilistic system may help us
understand more about how the system works than
we can understand in the apparently simpler
deterministic case.
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212 CAUSATION AND PROBABILITY

Laplace: Absolutely. In fact, this point becomes even
clearer and more pressing if we consider contexts
with more variables. So far, we have only been
considering a single candidate cause (the treat-
ment) and a single effect (the outcome). But, of
course, causal structures may be a lot more com-
plicated than this (Figure 13-2).\edq2\

Meno: For those contexts, don’t we have to assume
the strong causal Markov condition?

Laplace: Yes. Let us review this condition. We need a
few more concepts first. If X causes Y, let us say
that X is a (causal) parent of Y, and Y is a (causal)
child of X. Similarly, let us say U is a (causal)
ancestor of V if there is a sequence of variables
starting with U and ending with V such that each
variable in the chain is the parent of the next. If U
is a causal ancestor of V, then we will say that V is
a (causal) descendant of U. Finally, say that a set of
variables is causally sufficient if any common
causal ancestor of two or more variables is
included in the set.\edq3\

Meno: So, in these terms, the strong causal Markov
condition states that, in a causally sufficient set of
variables, if we know the values taken by the par-
ents of a given variable X, then learning the values
taken by other variables that are not descendants
of X tells us nothing about (the distribution of) X
itself.

Laplace: Yes, that is exactly right. In fact, for systems
in which all causal relationships between parents

and children are linear, the weak causal Markov
condition implies the strong condition.

Meno: In this context, the causal faithfulness condi-
tion now asserts that every independence relation
is a consequence of the strong causal Markov
condition applied to the true causal graph. Only
independence relations that follow from the
causal Markov condition will appear in the data.
If some other independence relation appears,
then the causal faithfulness assumption has been
violated.

Laplace: Again, exactly right. With these concepts in
hand, we are now in a position to discuss the prob-
lems brought about by deterministic relations.
Consider a simple situation with a common cause:
Pressing the garage door opener X leads to a light
blinking on the opener LO, the door opening D,
and a light going on in the garage LG (Figure 13-3).

Meno: So, the Markov condition tells us that if we
know whether the opener X was pushed, then D,
LO, and LG are irrelevant to one another. In tech-
nical parlance, D, LO, and LG are mutually inde-
pendent conditional on X.

Laplace: Correct, but here is the problem: Suppose
that the relationship between the door opener
being pressed and the light on the opener LO is
deterministic, so that this light goes on when and
only when the opener is pressed. It is now easy to
see that if I see the opener light, then I immediately
know that the opener has been pressed even if I
have not observed this directly. But, it then follows
that the door opening D and the garage light LG
are independent given only knowledge of the light
on the opener LO. This independence does not fol-
low from the causal Markov condition: If the rela-
tionship between X and LG were not deterministic,

\edq3\

\edq2\

FIGURE 13-2 A, B, and C are parents of E; G and H
are children of E; A, B, C, D, and E are ancestors of
G; E, G, and H are descendants of B. The set {A, B,
E, G} is causally sufficient; the sets {E, F} and {F, H}
and {F, G} are not causally sufficient. According to
the strong causal Markov condition, G is independent
of A, B, C, F, and H given E and D.

C
B

A

D E F

G H

FIGURE 13-3 A simple garage door opener: X is the
opener; LO is a light on the opener; D is the door
opening; LG is a light in the garage.
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then this extra independence would not hold, yet
the causal graph would be the same.

Meno: So far, I follow. Suppose I were to try to make
inferences about causal structure from conditional
independence, assuming the causal Markov con-
dition and, contrary to fact, the causal faithfulness
condition held? All such procedures use the fact
that under these conditions, if X is a causal parent
of Y, then X and Y will always be dependent
regardless which other variables we know (or con-
dition on). I do not see that causing immediate
problems here because this extra independence of
D and LG given LO simply tells us that there can
be no edge between D and LG, which is correct.

Laplace: Yes, but there are more unfaithful independ-
ence relations here. We already know that LO and
LG are independent once we know X. But, if X
and LO are logically equivalent, then LG and X
are also independent once we know LO because
we know LO if and only if we know X. Likewise, D
and X are independent once we know LO.

Meno: I see; so, in fact we will end up with no edges
except the one between X and LO.

Laplace: I’m afraid so.

Meno: I see now why those proposing the causal
faithfulness condition as an inferential principle
for learning causal structure explicitly exclude
deterministic contexts. In those contexts, the
faithfulness assumption will often (in fact, usu-
ally) be false.

Narrator: For example, Spirtes, Glymour, and
Scheines (1993) state: “We will not consider algo-
rithms for constructing causal graphs when such
deterministic relations obtain, nor will we con-
sider tests for deciding whether a set of variables X
determines a variable Y” (p. 57).

Determinism in Children’s Causal
Inferences

Meno: Can we return to children’s learning?

Laplace: By all means.

Meno: Inspired by my discussion with Socrates
about geometry, I also have concluded that
empirical developmental psychology is the best

way to answer epistemological questions. So, 
I have been reading the developmental literature
and find that several authors have put forward
the suggestion that children learn causal
structure by “implementing” inference algo-
rithms that rely on the Markov and faithfulness
assumptions.

Laplace: I think I have heard of this. Can you give me
an example?

Meno: In one set of experiments, children were
shown a device that was called a blicket detector, a
box with the capability of emitting a sound when
blickets were placed on it.

In these experiments, objects of two different types, let
us say A and B, were placed on the detector. The
children observed the detector making a noise in
certain configurations and were then asked various
questions.

Laplace: I think I follow.

Meno: In one experiment, 3- and 4-year-old children
were divided into two groups. One group, in the
one-cause condition, were shown the following
sequence of events:

A on detector with noise

B on detector without noise

A and B on detector with noise (repeated twice)

The second group, in the two-cause condition,
were shown the following:

A on detector with noise (repeated three times)

B on detector without noise (once)

B on detector with noise (repeated twice)

In each case, the children were then asked if
each object was a blicket. In the one-cause condi-
tion, children said that Object A was a blicket more
than twice as often (96% vs. 41%). In the two-cause
condition, they were roughly equally likely to say
that A and B were blickets (97% and 81.5%, respec-
tively). In another version of the experiment, chil-
dren were asked which of the two objects was a
blicket. The results were similar.

Narrator: [See Gopnik, Sobel, Schulz, and Glymour,
2001, Experiment 1.]
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214 CAUSATION AND PROBABILITY

Laplace: I think I follow the logic that the children
might have used, but I do not see the connection
to Markov and faithfulness.

Meno: Isn’t it obvious? The children took the fre-
quencies observed in the data and observed that in
the one-cause condition

0 ! P(Noise | not A and B), P(Noise | A and not B)
! P(Noise | A and B) ! 1

Hence, the presence of A makes Noise more
likely, and Noise and B are independent given A.

If the children also believe that the detector
does not make a noise without a trigger, so
P(Noise| not A and not B) ! 0, then Noise and B
are also independent given not A. Hence, by the
faithfulness condition we may conclude that B is
not a cause of Noise. Because A and Noise are
dependent, by the Markov condition they are
causally connected: It could be that the fact that
A is on the detector causes the noise, that the
noise causes A to be on the block, or that there is
some common cause of both events. However,
both the description of the blicket detector and
the fact that A is placed by an investigator suggest
that the placement of A is an external intervention
(i.e. it is exogenous), hence we may conclude that
A is a cause of noise.

Laplace: I see; if the placement of the block near the
detector were not performed by a human (e.g., it
was a consequence of some larger mechanism),
then we might conclude that there was some com-
mon cause at work.

Meno: Exactly. You still look skeptical.

Laplace: I have several concerns with this argument.
Broadly, I am not convinced that the formalism
of probability theory needs to be invoked to
explain the logic that is used here. After all the
relationships between the detector and the blocks
are deterministic, aren’t they, at least in the one-
cause task? Every time a blicket is placed on the
detector, it goes off. Further, I think that if prob-
ability theory were used in the way that is sug-
gested, then we would be less good at learning
causal relationships than in fact we are. Third, I
am skeptical about invoking the faithfulness
assumption in this context because as an inferen-
tial principle I believe that it is incompatible with

a belief that one is observing a simple determin-
istic system.

Meno: Please go on. What do you see as problematic
about the use of probability theory.

Laplace: Were I a child, I would be hesitant about
regarding the observed (relative) frequencies seen
in such a small number of cases as representative
of the probability that any of these events would
happen in these conditions.

Meno: Why shouldn’t one do so?

Laplace: Well, suppose that I first showed the follow-
ing four outcomes:

Nothing on detector without noise

A on detector with noise

A on detector without noise

Nothing on detector with noise

Meno: So, from faithfulness I would conclude that A is
not a cause of the noise because the probability of
noise is independent of A: P(Noise | A) ! P(Noise |
not A) ! 1/2.

Laplace: But, here is the problem. If you continue to
apply the same logic, and I now tell you that I am
going to place A on the detector, then before you
see the outcome, you can conclude that you will
believe that there is a causal relationship between
A and the noise.

Meno: That seems like an absurd outcome. How does
it follow?

Laplace: Well, if we place A on the detector and it
makes a noise, then with that additional observa-
tion, according to the observed frequencies,
P(Noise | A) ! 2/3, while P(Noise | not A) ! 1/2, so
noise and A are dependent. Conversely, if we place
A on the detector and it fails to make a noise, then
P(Noise | A) ! 1/3; P(Noise | not A) ! 1/2, so again
A and the detector are dependent. In fact, even
before I show you any data, if you know how many
trials you plan under each condition, you may be
able to conclude that, if the observed frequencies
are assumed to be representative, then there will
have to be a causal connection. For example, if we
plan an odd number of trials in some condition and
assume that the observed frequencies in those trials
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are representative, then it will simply have to follow
that the frequencies will indicate dependence.

Narrator: This assumes that the outcome is binary.

Meno: I see the problem. But, it is important to
remember that we are merely observing the rea-
soning patterns employed by young children;
there is no reason to assume that their inferences
should abide by normative principles.

Laplace: Indeed. Psychologists have often docu-
mented our “irrational” belief in the “law” of small
numbers.

Narrator: Tversky and Kahneman (1982)\edq4\
describe the law of small numbers as the belief
“according to which even small samples are highly
representative of the populations from which they
are drawn.”

Laplace: But, I think it is equally important to bear in
mind that there may be more than one explana-
tion for the observed behavior. Furthermore, the
inferences made in the one- and two-cause condi-
tion experiment you described seem eminently
reasonable—one would not expect an adult, even
one attuned to statistical inference, to reason any
differently. Surely you would agree that if we can
explain children’s behavior in these experiments
without suggesting that they are systematically irra-
tional, then that would be a preferable outcome?

Meno: Agreed. On reflection, I realize that when
inferences about causal structure are made by
machine learning algorithms employing faithful-
ness and Markov conditions, then these are based
on databases containing hundreds, if not thou-
sands, of cases.

Laplace: Yes—without further assumptions, any rea-
sonable statistical procedure would be agnostic
about the presence or absence of dependence
from samples as small as those used by the chil-
dren in the experiment you described.

Meno: Is it not possible that the children think it is
safe to conclude that these small samples are rep-
resentative because they are presented by a trusted
adult figure in the person of the experimenter?

Laplace: One might think this, but I see two
problems. First, if one really believed that one 
was observing a blicket detector that was not

deterministic, then surely one must believe that it
is outside the control of the experimenter to make
it produce or fail to produce a noise on any partic-
ular occasion? In which case, there is no way for
the experimenter to ensure that the data are rep-
resentative: Although they might choose when to
place or not to place the blocks, whether a noise
is produced would not be entirely within the
experimenter’s control, so “representativeness”
could not be guaranteed.

Hence, when the detector appears to behave
indeterministically, the child would have to
believe that the experimenter in fact controlled all
aspects of the device and was creating the illusion
of probabilistic data to (beneficently) reveal the
true probabilistic properties of the device (that
would pertain in the absence of the experi-
menter?). Although, of course, this is in fact how
these experiments are conducted, I believe it
would be an unusual 3-year-old who would adopt
this as their working hypothesis.

Narrator: In principle, even with an indeterministic
device, an experimenter might control the
observed proportions by choosing to stop at an
“appropriate” point. However, it would again be
rather surprising if feelings of trust with respect to
the experimenter were parlayed in such an elabo-
rate manner: The sensitivity of frequentist statisti-
cal inferences to the choice of stopping rule was
something that only became widely understood
within the last 50 years.

Meno: I agree.

Laplace: Second, if it could be demonstrated that the
children had such deep trust in the experimenter
that they would consider this a plausible scenario,
then one might seriously question the ecological
validity of any inferences made about causal learn-
ing that took place in such a scenario.

Meno: Suppose I accept, as you appear to be arguing,
that such small samples cannot be regarded as
data on which one may reliably base conclusions
about probabilities. You mentioned that you
thought that the causal inferences made might be
explained as normative without reference to prob-
ability theory. Can you expand on that?

Laplace: You read me correctly: From a statistical per-
spective, very little can be obtained from such
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216 CAUSATION AND PROBABILITY

small samples, other than the fact that certain
combinations of events are possible (have nonzero
probability). When I say statistical perspective, I
mean if one starts out with the hypothesis that
there are probabilistic causal relationships
between the variables.

If this is the viewpoint with which we typically
viewed the world, then it is somewhat surprising,
perhaps even inexplicable, that most people would
agree on the correct answer to the blicket ques-
tion, at least in the one-cause scenario.

Meno: Some psychologists have made many of the
same arguments and argue that therefore chil-
dren’s inferences must be constrained by a great
deal of prior knowledge in a Bayesian way.

Narrator: [See Tennenbaum and Griffiths, this
volume.]\edq5\

Laplace: If we are successful in providing a norma-
tively rational explanation for children’s infer-
ences, then it will not be surprising if similar
conclusions would be drawn by a hypothetical
Bayesian agent. Some might even regard this as
necessary.

However, I do not believe that this is the only
explanation for such inferences, and indeed, I
think that such an account leaves unresolved as
many questions as it addresses.

Meno: Can you be more specific? Doesn’t the
Bayesian approach, in principle, provide a com-
plete description of how to update one’s beliefs?

Laplace: That it does. However, I would argue that a
psychological theory should explain why people
agree on the “correct” answer in the one-cause
blicket experiment. The Bayesian approach does
not prescribe any specific set of prior beliefs; in
fact, one might expect different agents with differ-
ent life experiences to have different beliefs. For
example, Calvinist children might think that
Divine intervention was responsible for the blicket
detector making a noise at precisely the moment
when the block was placed on it; Jungians might
think it was just another instance of synchronicity
at work.

Without an explanation regarding why we all
have similar prior beliefs pertaining to such situa-
tions, the Bayesian account does not explain why
we have the beliefs that we have.

Meno: I see. You contend that for any particular set of
(posterior) beliefs we have after making some
observations, a proponent of Bayesian inference
might always concoct a hypothetical set of prior
beliefs for us, which had we had them and had we
been Bayesian would have resulted in the beliefs
we have. But, because this could have been done
for any set of posterior beliefs, the existence of
such a set of prior beliefs in any given case does
not constitute evidence that we arrived at our
beliefs by Bayesian means.

Laplace: Indeed. Further, I believe that there is a
computational issue that arises.

Meno: How so?

Laplace: It is a simple consequence of Bayes’ rule that
any hypothesis that is initially assigned probability
0 will continue to be assigned probability 0 regard-
less of the evidence that is observed.

Meno: I’m familiar with that, but how is it relevant
here?

Laplace: The upshot is that if we do not wish to be
unable to learn the true causal structure eventu-
ally, then we must ensure that we do not assign it
probability 0 initially. Because the number of can-
didate causal structures increases quickly with the
number of variables, an ideal Bayesian reasoner is
faced with the prospect of keeping track of per-
sonal beliefs concerning hundreds, if not millions,
of candidate hypotheses.

Meno: This is required if we are to be “ideal”
Bayesians, but couldn’t we be flawed Bayesians?
For example, just entertaining seriously a few
hypotheses, while regarding the remainder as hav-
ing some small probability that we don’t bother to
update?

Laplace: We might, but again, as with the specifica-
tion of prior beliefs, I believe that the “meat” of
any such account lies in the details of how and
why such an approximations scheme works in
practice.

Narrator: Tennenbaum (personal communication)
\edq6\ has proposed that a causal learner might
approximate a (metropolis-Hastings) Markov chain
Monte Carlo scheme for sampling from a posterior
distribution. For example, a learner could keep in
mind a single model but be continually switching

\edq5\

\edq6\

Gopnik-CH_13.qxd  10/10/2006  1:40 PM  Page 216



from one model to another even in the absence of
any new data (but with the probability of switching
determined by the data observed so far). At any
given moment, the learner would have “in mind”
only one model but would continually be changing
this model, so that over an extended period the pro-
portion of the time that the model is in mind would
approximate the posterior probability. This is an
intriguing idea, but it still requires that the learner
have “access” to prior probabilities assigned to all
possible models. (The issue of explaining/specify-
ing priors also remains.)

Meno: I also see that most of us would consider it pos-
sible for us eventually to learn about a system with
a structure that has features unlike anything we
have ever seen, whereas an ideal Bayesian would
need to have initially considered such a system at
the outset. This reminds me of a discussion I once
had with Socrates concerning the apparent prob-
lem of coming to learn anything new.

Narrator: [See Plato, Meno 80 D.]

Laplace: Although I would not wish to rule out a
Bayesian inferential approach per se,I believe that
there is another, perhaps simpler, way forward:
The apparent conflict between strong human
agreement concerning the correct answer in the
(one-cause) blicket and statistical agnosticism
from small amounts of data suggests to me that
most people do not adopt a statistical perspective
on these problems, Bayesian or otherwise. Instead,
they assume that they may simply be observing a
deterministic system.

Meno: I can certainly see how that might simplify
matters in the one-cause situation: The detector
makes a noise if and only if Block A is placed on it;
Block B is irrelevant.

Laplace: This is exactly what I had in mind, but noth-
ing comes for free. In arriving at this conclusion,
we have used the (weak) causal Markov assump-
tion: The observation that the machine makes a
noise after Block A is placed on it is interpreted as
an intervention (or treatment), namely, placement
of Block A then leading to an effect (or outcome),
namely, the noise. The weak causal Markov condi-
tion invites us to conclude that there is a causal
connection underlying the observed association.
Under the hypothesis that placement of Block A is

an (exogenous) intervention, this implies that A is
the cause of the noise.

Meno: That tells us that A is a cause of the noise. But,
how do we eliminate the possibility that B is also a
cause? In the analysis, we described the investigators
assumed faithfulness and assumed that the failure of
B was representative, that is, that in general there was
no dependence between B and the noise. How can
we draw this conclusion without those assumptions?

Laplace: Rather than employ faithfulness, we simply
employ another parsimony principle: Because no
other causal relationships are required to explain the
observed events, we assume that none are present.

Meno: Of course. Faithfulness may also be viewed as a
parsimony principle in the sense that, as employed
in some learning, it leads us to choose stochastic
causal structures with fewer parameters. Here, in
the one-cause condition we presume that there is
no relationship between Block B and the noise, not
because we have observed them to be statistically
independent, but simply because we can explain all
of the observed noises without assuming that B will
lead the detector to make a noise.

Laplace: Absolutely right. From my point of view, we
have not nearly enough data to say anything about
the statistical independence of B and the detector.

Meno: But, wouldn’t this sort of deterministic infer-
ence just collapse to good old-fashioned deductive
logic? A is a blicket if and only if, if A was placed
on the detector then the detector activates.

Laplace: Not exactly. Standard propositional logic
does not include methods for dealing with causal
interventions.

Meno: Let me see if I understand. When we have a
set of propositions such as

Socrates is a man implies Socrates is mortal.

Socrates is mortal implies life insurance will not
be free.

these implications are supposed to hold true
always, whereas we wish to consider situations in
which, via external intervention, some proposi-
tions are no longer true.

Laplace: Precisely. If there is a medical breakthrough,
some (rich?) people’s lives might be extended
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indefinitely. In such a case, the first proposition
might no longer hold true—we might intervene to
make Socrates immortal—but the second will no
doubt continue to hold true. The propositions in a
causal model are thus “modular” in the sense that
an ideal intervention can override some proposi-
tions while leaving others intact.

Narrator: [See Appendix; Pearl, 2000, Chapter 7;
Schulz et al., submitted and this volume.]\edq7\

Laplace: Thus, this “causal logic” has features that
make it different from classical deductive logic. In
particular, the difference between interventions
and contingencies is inferentially crucial, but
there is no such distinction in classical logic. Both
children and adults seem to be appropriately sen-
sitive to that distinction.

Narrator: [See, for instance, Gopnik et al., 2004;
Steyvers, Tenenbaum, Wagenmakers, and Blum,
2003; Lagnado et al., this volume.]\edq8\

Meno: I can see that assuming that things are deter-
ministic and applying a causal logic simplifies
matters, but surely such an assumption is too
stringent to be of much use in real life, when evi-
dence is almost never deterministic. For that mat-
ter, the data presented in the two-cause condition
are incompatible with a deterministic functional
relationship. Remember that in the experiment
children see A set off the detector 3/3 times, and
B set it off 2/3 times. They conclude that both
blocks are blickets. But, here on one occasion we
have block B alone and a noise, and on another
occasion we have block B alone and no noise.
The same is true of other developmental experi-
ments. In one of the puppet machine experi-
ments, for example (Gopnik et al., 2004), one
puppet almost always, but not always, makes the
other puppet go.

Laplace: It is true that the two-cause condition is
incompatible with a belief that whether a noise is
produced is determined entirely by which blocks
are present. However, by hypothesizing an addi-
tional unobserved variable, for example, a loose
connection between the battery and the buzzer or
the amount of pressure the experimenter applied
when placing the object, one could easily con-
struct a deterministic model that was compatible
with the observed data. Then, you could make

inferences about this deterministic model in the
way I described.

Meno: But, is there any evidence to suggest that
agents are willing to postulate the existence of
such unobserved causes to “save” their belief in
determinism. I seem to recall reading something.

Laplace: Indeed, there is. Consider the following
experiment:

Children are initially told that the experimenter
likes to trick her confederate. The children then
see a light, which is activated by a switch. There is
also a ring on the light, which must be in place for
the light to work.

Children are divided into two groups. In the first
group (stochastic causation condition), the confed-
erate makes eight attempts to turn the light on by
pushing the switch but is successful only on two
occasions. In the second group (deterministic causa-
tion condition), the confederate is successful on all
eight attempts. After seeing these eight trials, the
experimenter then reveals a small key chain flash-
light to the children, which has not been seen previ-
ously. Both groups of children are then asked to
make it so that the switch does not work. Most of the
children (15 of 16) in the stochastic causation group
then reach for the flashlight even though they have
never seen it do anything (one child chose the ring).
By contrast, in the deterministic causation group
almost all of the children (14 of 16) choose to
remove the ring (two choose the flashlight).

Narrator: [Schulz, Sommerville, and Gopnik, in press,
Experiment 1.]

Meno: Interesting. So, this indicates that the children
in the stochastic causation group do not believe
that “things just happen.” They think that if the
light is not working, there must be a (determinis-
tic) explanation, and they are sufficiently invested
in finding such an explanation that they are will-
ing to hypothesize that an entirely new object has
such powers.

But isn’t it problematic that children are will-
ing to attribute such hidden variables so easily?
With enough hidden variables, we can represent
any input-output function by an infinite variety of
different graphs. Having too many causal answers
is just as bad as having too few, and accurate causal
inference will be just as difficult in these cases.

\edq7\

\edq8\
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The children will be like Freudians or astrologers
who can explain everything and therefore cannot
really explain anything.

Laplace: But, the experiment points to more than
that: Notice that most of the children in the deter-
ministic causation group did not attribute causal
powers to the flashlight. This suggests that the chil-
dren do not hypothesize hidden variables in a
promiscuous fashion. Rather, they do so parsimo-
niously and systematically. The events observed in
the deterministic causation condition do not
require any additional variables to be fully
explained.

Meno: Still, it seems to me that there is a problem
here. Let me return to your garage door example
and consider the situation in which I do not
directly observe whether you pressed the opener X,
although we do observe the other three variables
D, LO, and LG. There are then no deterministic
relationships among the observed variables, yet I
will still fall into error if I make inferences based
on faithfulness. For example, LG and D are inde-
pendent given LO; hence, I will suppose that they
are not causally connected, when in fact they are.

Laplace: Absolutely right.

Meno: Well, then, here is what I do not understand. If
deterministic relations, even between observed and
unobserved variables, are incompatible with using
faithfulness, and yet any indeterministic system may
be viewed as a deterministic system with hidden
variables, then how does it ever make sense to
assume faithfulness? Because you seem comfort-
able with using faithfulness in some indeterministic
contexts, doesn’t your argument prove too much?

Laplace: An excellent observation. Is there no room
left in this world for faithfulness? Here is the solu-
tion to your dichotomy. Suppose for a moment
that we are omniscient demons, knowing the
entire causal nexus.

Meno: “Laplacian” demons?

Laplace: If you insist. Given any set of observed vari-
ables, we will add variables to the set until, for any
two variables in the set, if they have a common
cause, then that variable is included in our set.
Such a set of variables may be called causally suf-
ficient. If there are no deterministic relationships

among this larger set of (observed and unobserved)
variables, then we may proceed to use faithfulness
in our analysis of the original variables that we
observed.

Meno: Of course, if we were the demon, we would
not need to use faithfulness to infer the structure.

Laplace: Agreed. This is obviously a thought experi-
ment. The point is that there is a well-defined set
of variables among which we require there to be
no deterministic relationships to safely base infer-
ences on faithfulness.

Meno: I see. The scenario with the garage door
opener obviously fails the test.

Laplace: Indeed. A simple way in which this condi-
tion can be satisfied is if each variable in the sys-
tem is subject to at least one independent cause.

Meno: I see; so, deterministic relationships are not
problematic in a system in which each variable
has many causal parents.

Laplace: This is provided that we do not observe all
of them, and that is usually the case in complex
systems.

Meno: But this is highly problematic in deterministic
systems in which variables have only a few parents.

Laplace: Whenever we make causal inferences, we
are not considering all the possible variables,
observed or hidden, that exist in the universe, but
only a small subset of those variables.

Narrator: [See also Glymour, chapter 18, this vol-
ume.]\edq9\

Laplace: Metaphysically, we may have a hard time
imagining genuinely indeterministic causal rela-
tions. But, even if we are metaphysical determin-
ists, in complex settings we often simply ignore the
unobserved variables we think are responsible for
indeterministic appearances, especially in com-
plex cases—we brush them off as “noise” that is
irrelevant for causal inference. From a formal per-
spective, this epistemological brush-off has just the
same consequences as believing in metaphysical
indeterminism.

Meno: From what you say, simple deterministic sys-
tems are problematic for causal inference from
conditional independence relations. Yet, many
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mechanical devices one can think of behave in
exactly this way. After all, the blicket detector is
just such a system and so are the other “machines,”
like the puppet or the gear-toy machine that devel-
opmentalists have used to test children’s causal
inferences. This brings us back to the original
question of how children manage to learn such
systems with so little data? If they do not use faith-
fulness to infer complex noisy causal systems, then
how else could they manage to learn so much so
quickly and accurately?

Laplace: Now, you ask me to enter the realm of conjec-
ture. I can only guess, but I believe there are a num-
ber of factors that work to children’s advantage.

Let us turn to faithfulness first. As we
described, it serves to identify when variables are
not causally related. This is important because, in
the right context, it allows these algorithms to
establish that a particular variable is uncon-
founded or exogenous—it is not itself affected by
other variables in the system.

Meno: I see. Once we have established that variable
X is exogenous, then we only require the causal
Markov condition to conclude that anything
dependent on X is caused by X. If X is exogenous,
then we have ruled out the possibility of common
causes and ruled out the possibility that anything
else is causing X. But, if we cannot use faithful-
ness, then how else could we establish exogeneity?

Laplace: Children might establish exogeneity in other
ways. For one thing, children, unlike data-mining
programs, can actively intervene on the causal sys-
tems they are learning about. In fact, in their spon-
taneous play they perform such interventions all
the time. It is what parents call “getting into every-
thing.” Children might have a background theory
that allows them to attribute the property of exo-
geneity to actions they undertake. In particular,
like adults, children might assume that their own
intentional actions are the result of free will and so
are intrinsically exogenous.

Meno: But in the blicket detector experiments, chil-
dren do not get to intervene on the system; they
just watch other people’s interventions.

Laplace: This raises an interesting point. If children
also assume that the actions of others are analo-
gous to their own actions—particularly that they

are also the result of free will and so are exoge-
nous—then they could make similar inferences by
just watching other people manipulate objects.

Meno: I see. In fact, interestingly, several experiments
have shown that children will distinguish between
actions performed by agents assumed to be like the
children themselves and those performed by nona-
gents.

Narrator: [See Meltzoff, Somerville, this volume
\edq10\. Also see Schulz, Sommerville, et al., 2005,
Experiment 4.]

Meno: Children do not simply observe patterns of
association but see goal-directed agents around
them performing actions. Thus, a child might be
more like a first-year graduate student in a lab or a
historian of science, who may be fairly sure that if
these otherwise well-adjusted adults spend a lot of
time manipulating something, then it is probably
causally efficacious in some way.

In fact, some developmentalists, as well as
grown-up psychologists, have already argued for
the significance of interventions in human causal
inference.

Narrator: [See Schulz et al., chapter X, this volume;
Lagnado et al., chapter X, this volume; Hagemeyer
et al., chapter X, this volume.]\edq11\

Meno: In this respect, human inference is different
from the perspective of a data-mining program,
which cannot exclude the possibility that the vari-
ables are completely unrelated to one another (or
completely confounded by unobserved variables).
Other experiments have shown that children can
use interventions on deterministic systems to make
complicated inferences about the causal structure
of those systems—distinguishing common causes,
common effects, and causal chains.

Narrator: [See Schulz et al. chapter X, this
volume\edq12\; Schulz et al., in press.]\edq13\

Meno: But, what you say suggests that interventions
will be especially important, in fact, indispensable,
if we want to understand deterministic systems.

By the way, earlier you mentioned crossover or
within-individual experiments as playing a role.
Can you expand on that point?

Laplace: As mentioned in our discussion, the “funda-
mental problem of causal inference” is that we

edq10\

\edq11\

\edq12\
\edq13\
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typically do not get to view the outcomes for the
same subject under two different treatments.
Randomization serves to construct groups of sub-
jects whose distributions of outcomes under the
same treatment may be considered to be similar.

However, a child typically does not do experi-
ments on a large group of blicket detectors. The
child typically only has one detector, but it is often
reasonable to assume that different interventions
leave the device unchanged.

Meno: Yes—although it is possible to imagine that
Block A is somehow “imprinted” on the blicket
detector, like tweed trousers on a newly hatched
Lorenzian duckling, causing it to squawk when
(and only when) its first love is again placed on
it—this is certainly not the first hypothesis that
springs to mind. Indeed, the word detector seems
to rule this out.

Laplace: Precisely. It would be an unusual (although
perhaps not irrational) child who would say,
“Block A is the blicket—it was blicketized by
being the first object placed on the detector!”

Some interventions have permanent reversible
effects on objects, such as dropping the glass on
the tile floor or pouring ink on the Persian rug, but
the fact of irreversibility is usually plain to see.
Interventions that lead to undetectable, but per-
manent, irreversible effects are less common.
Hence, children live in a world amenable to
within-subject crossover designs.

Meno: Indeed; you could think of children’s repetitive
spontaneous play with objects as just such an
experimental strategy. Grown-up psychologists
often treat children’s perseveration as a sign of stu-
pidity or at least lack of executive control. But, it
also might be an excellent way to get within-subject
information, in particular to check that there have
been no irreversible changes, so that the same
intervention continues to produce the same effect.

In this way, the fundamental problem is
avoided, and individual causal effects can be
inferred.

Laplace: Yes, in fact, when combined with the
assumption of determinism, it also makes feasible
inferences about the existence of unobserved hid-
den causes of a single variable and the causal
effect of such hidden causes (i.e., whether they are
inhibitory or generative).

Narrator: [See Schulz, Sommerville, et al., in press,
Experiments 2 and 3.]

Laplace: The Markov and faithfulness conditions
sometimes make it possible to infer the existence
of an unobserved common cause of two variables
in indeterministic systems, and there is some evi-
dence that adults and children make such infer-
ences. But, inferences about the existence of
single unobserved causes cannot be made purely
on the basis of conditional independence and
dependence. (Clustering of imputed “distur-
bance” terms would be one way to proceed.) Yet,
children also seem to make such inferences.

Narrator: [See Gopnik et al., 2004; Kushnir, Gopnik,
Schulz, & Danks. 2003; Schulz et al., this volume.]
\edq14\

Meno: This may also solve another problem: One
concern that I have had with the standard
approach to causal inference based on directed
acyclic graphs (also called Bayesian networks) is
that all causal relationships are asymmetric: If X is
a cause of Y, then Y is not a cause of X. In particu-
lar, under the standard account of interventions, if
we were to intervene on Y, then we would produce
no change in X—cyclic systems are explicitly ruled
out. Yet, there are simple systems in which causal
relationships appear to be reversible. For instance,
I can pull the engine of a toy train, and the tender
will be pulled along, but if I choose to push the ten-
der forward, then the engine will also be moved.
And, in some experiments children seem to infer
such cyclic relationships. In the gear-toy experi-
ments, for example, children hypothesized that
Gear A might sometimes move Gear B while at the
same time Gear B might sometimes move Gear A.

Narrator: [See Schulz et al., chapter X, this volume;
\edq15\ Schulz et al., in press.]\edq16\

Laplace: Reversibility of the type you describe is sim-
ple to include in an account of intervention in
which two variables are related deterministically
and the relationship is one to one, so that each
value of X corresponds to a unique value of Y and
vice versa. This is a model of intervention corre-
sponding to reversing edges rather than breaking
edges. For example, if prior to intervention we
have A → B → C and we then intervene on C,
then this will lead to C → B → A.
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Narrator: This intervention model may be general-
ized to having p input variables and p output vari-
ables, provided that each possible vector of values
for the outputs corresponds to a unique vector of
values for the inputs.

Meno: Like any working hypothesis, assuming deter-
minism or near determinism (i.e., a few unob-
served variables) will work well if true but may be
highly misleading when false.

Laplace: But, again, we do not learn causal relation-
ships purely out of intellectual curiosity.
Considerations of utility also play a role.
Deterministic causal systems are, by definition,
more reliable, and thus more useful, once we
have learned them. If our goal is to manipulate
the world around us, then learning the subtleties
of an unreliable system may not be worth the
effort.

If a system is complex and indeterministic,
then we have no hope of learning how to manipu-
late it, absent large amounts of data; hence, unless
we really can gather a lot of data, from a pragmatic
point of view we are losing little by ruling out such
systems at the beginning.

Remaining Problems

Meno: You’ve convinced me that a near-deterministic
experimental causal logic may serve children as
well as the full apparatus of probabilistic Bayes net
causal learning algorithms. But, do you see no role
for indeterminism in children’s learning?

Laplace: That may be going too far. I almost always
would qualify anything I say. Empirically, children
do seem to use observed frequency as a way of esti-
mating causal strength, much as adults do. For
instance, it has been shown that children think a
block that sets off the detector 2/3 times has “more
special stuff inside” than one that only sets it off 1
of 3 times. Of course, these judgments don’t
involve causal structure—the sort of judgments
captured by causal graphs, but only the parameter-
ization of those graphs.

Narrator: [See Kushnir and Gopnik, 2005.]

Meno: Don’t these experiments necessitate the use of
indeterministic models as cognitive constructs?

Laplace: An indeterministic model provides one
explanation, but observe that it is also possible to
see these experiments concerning the amount of
special stuff as revealing that children are capable
of using different levels of description of frequency
rather than using indeterministic models per se.

Meno: How so?

Laplace: If we view the three responses resulting from
placing the block on the detector three times in
succession as a single response that takes four val-
ues 0, 1, 2, 3 (rings of 3), then we can build a
deterministic model for the system. Certain blocks
lead to a response of 1 of 3; others lead to a
response of 2 of 3. For example, it might be the
case that every time we place a given block on the
detector a constant (deterministic) amount of spe-
cial stuff is transferred to the detector. The detec-
tor accumulates special stuff until a threshold is
reached, at which point the detector makes a
noise, and its special stuff reservoir is depleted by
some (fixed) amount. Although a given block
always transfers the same amount, different blocks
transfer different amounts.

Meno: I see. If we may set aside your metaphysical
theory of special stuff for a moment, there appears
to be a more general point here. Your reasoning
seems to suggest that another route to incorporat-
ing seemingly indeterministic data into a deter-
ministic world view is simply to provide a level of
description for our variables that avoids recording
the outcome in any specific case but rather just
describes ensembles of outcomes. Thus, Y is a
deterministic function of X, but Y takes values
such as never, rarely, often, always, which refer to
collections of individual observations.

Narrator: Note that in a deterministic system a given
set of inputs either always or never produces a cer-
tain output.

Laplace: Indeed. This is an instance of the following
idea, which is familiar from regression: Knowing
someone’s height does not allow us to predict their
weight, but the average weight in a given sub-
population of people who are all of exactly the
same height may be a simple deterministic func-
tion of that height. If the variable Y takes on values
such as never or rarely, then it is basically record-
ing the average (rate) of occurrence of an event
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under some condition. Thus, we may describe
deterministically the way in which X (special stuff)
influences the average response (frequency of the
detector ringing).

Meno: This also raises a question regarding what it
means to “use” an indeterministic model.
Regression can be thought of as a statistical proce-
dure derived from a probability model, or it can
simply be thought of as line fitting. I could use the
regression line for making predictions without
explicitly assuming a probability model. In this
case, am I or am I not using an indeterministic
model?

Laplace: I agree that this is not so clear.

Meno: To my mind, psychological causation seems in
some sense far more indeterministic than physical
causation, and yet we know that children infer the
structure of psychological systems as quickly and
easily as they make physical inferences.

Narrator: [See Schulz and Gopnik, 2004.]

Laplace: Yes. Other agents are often quite unpre-
dictable in the way in which they respond to us.
Our daily interactions certainly provide plenty of
time to gather data about those who are closest to
us. On the other hand, such indeterministic sys-
tems may not have a fixed causal mechanism.
Agents around us are changing even as we are
learning about them: One of the ways in which
they change is that while we learn about them
they also are learning about us. This makes the
learning task a bit more complicated because data
are not generated by a fixed underlying distribu-
tion. You may be smiling at me because you like
me, because you think that I like you, or more
deviously, because you think you have made me
think that you like me and so on.

Meno: Virologists and pathologists sometimes have to
study systems that are constantly evolving and that
change the way they function in response to inter-
ventions.

Laplace: Indeed, but viruses that evolve quickly are
much harder to combat than those that do not.

Another difference is that in such circum-
stances the simple fact of gathering data—observ-
ing your expressions—is itself an intervention in
the system. As every parent of a toddler soon finds

out, often the best way to ensure that a tantrum
continues is to try to find out what is wrong. So, it
is puzzling that children make these inferences as
easily as they do. On the other hand, the fact that
children often manipulate their parents and vice
versa suggests that perhaps humans are less hard to
predict than we might like to believe.

Meno: Making the analogy between the way in which
scientists and statisticians analyze their data and
the way in which children learn from observations
around them seems to me to leave two important
parts of the process unexplained: hypothesis gener-
ation and concept formation. Do you agree?

Laplace: Absolutely. Statistical analysis of causation
often gives no account regarding how particular
variables are chosen as candidate causes or effects.
Heuristics based on observing other agents may be
of assistance to children in this regard. For exam-
ple, Mommy seems to spend a lot of time fiddling
with that little black box, so let me investigate it;
someone or something turns the TV off, so let me
see if I can find out what it is.

Machine learning algorithms often have a well-
defined hypothesis space through which they per-
form some sort of search. However, children face a
much less well-defined, hence larger, search space
and arguably do not carry a giant list of all possible
causal hypotheses. (This also causes problems for
Bayesian accounts.) Choosing good candidate
hypotheses in such circumstances seems like a
hard problem, but one that they do well.
Experiments such as those in which hidden causes
(the flashlight) were hypothesized give a tantaliz-
ing glimpse of this process in action.

Meno: Finally, Laplace, as I say my association with
Socrates has taught me the importance of empiri-
cal developmental findings. How could we test
your ideas about determinism empirically?

Laplace: I regard the experiments relating to the key
chain flashlight described as empirical evidence
that children are willing to postulate the existence
of hidden variables merely from observations that
appear to be indeterministic in a manner not
compatible with a conditional independence-
based approach because such approaches only
postulate common causes. Naturally, this does not
rule out the use of probabilistic models in other
settings.
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More generally, I speculate that if we give
children the same problem in a deterministic or
near-deterministic way and in a way that genuinely
requires them to compute conditional probabili-
ties, then I predict that they will solve it in the
deterministic case and not the probabilistic one.
All the published studies have been deterministic
or nearly so. I have a feeling that some unsuccess-
ful probabilistic experiments might be lurking in
wastebaskets and desk drawers.

Meno: Maybe so, but the experimental problem is
harder than you might think. As you said, it may be
that we use indeterministic information just when
we assume that there are many uncontrolled vari-
ables, lots of noise in the system. But, a develop-
mental psychologist’s first task is to make sure that
the problem is clearly posed, and there are no extra
factors that might be distracting the child. You may
be able to persuade undergraduates that they
should only pay attention to the information about
probabilities on the sheet directly in front of them.
But, it will be much harder to persuade young chil-
dren to do so (and even with undergraduates, the
individual differences among participants suggest
that they also may be considering other factors).

Narrator: [See Lagnado et al., chapter X, this volume;
Hagmeyer et al., chapter X, this volume.]\edq17\

Meno: How can we be sure that children only pay
attention to the variables we control while at the
same time leaving them the impression that there
are many other uncontrolled variables lurking in
the background, and therefore that indeterminism
might be appropriate?

Laplace : Perhaps we might exploit the indeterminism
of psychological relations.

Meno: I see; suppose we show the child that Bunny
the fussy eater will eat plain peanuts one of three
times you offer them but will eat them three of
four times when you add salt, although he never
eats salt alone. The salt influences the probability
distribution of Bunny’s preferences. Will children
infer that the salt has a causal effect on Bunny’s
actions in this indeterministic case?

Laplace: I think it would be interesting to see how
children would respond. However, I believe that,
as with the special stuff experiments, it would be
possible for someone to describe the result of the

experiment deterministically, without reference to
probabilities, by saying that, “Bunny frequently
eats peanuts with salt, but rarely eats them with-
out.”

As with our discussion concerning the pros and
cons of a Bayesian explanation of human reason-
ing, I believe that although many observations
may be compatible with a child entertaining an
indeterministic model, I think it is unlikely to be
necessary. Probability is a relatively recent addi-
tion to the set of descriptive methods used by sci-
entists. It was also one that was fiercely resisted at
first. Probability may seem to be an integral part of
the metaphysical landscape in the 21st century,
but it certainly was not always thus.

Meno: Oh, dear. We appear to have raised as many
interesting issues as we have resolved. At least 
we have established the importance and primacy
of experimental evidence in informing our
theorizing.

As my dear friend Lavoisier\edq18\ says:

In the practice of the sciences imagination, which
is ever wandering beyond the bounds of truth,
joined to self-love and that self-confidence we are
so apt to indulge, prompt us to draw conclusions
which are not immediately derived from facts; so
that we become in some measure interested in
deceiving ourselves.

[In contrast] . . . when we begin the study of any
science, we are in a situation, respecting that sci-
ence, similar to that of children; and the course by
which we have to advance is precisely the same
which Nature follows in the formation of their
ideas. . . . We ought to form no idea but what is a
necessary consequence, and immediate effect, of
an experiment or observation. (p. 4)
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Appendix

This appendix outlines simple methods for learning
cause-effect relationships from small numbers of inter-
ventions in a causal system in which all nodes are
binary, and all endogenous variables (i.e., with par-
ents) are a (deterministic) disjunction of conjunctions
of their parents. We present an algorithm that lays out
a simple experimental procedure that enables the
learner to learn first indirect and then direct causes. In
contrast to other machine learning algorithms, this
procedure does not say anything about what should be
inferred from passive observations. This is in keeping

with the contention (of Laplace) that interventions
allow learners to avoid the complexities of probabilis-
tic inference. Further, the algorithm focuses on what
causes a specific outcome variable. Again, this reflects
the view (again stated by Laplace) that learners are
often attempting to (re)produce a particular outcome
(e.g., make it go, make Mommy smile, etc.).

The method outlined here is relevant to the
blicket experiments (and others like them) only inso-
far as a participant might view the actions of the per-
son putting the blocks on the detector as (partially)
carrying out the sequence of interventions sketched in
this method.

Basic Notions and Definitions

Consider a deterministic causal model in which all
variables are boolean, taking values true or false. We
also refer to these states as on and off, respectively. We
suppose an underlying directed causal graph in which
every vertex with parents is a logical function of its
parents taking the specific form of a disjunction of
conjuncts:

x!(p11 ! p12
. . . ! p1k1) "

(p21 !… ! p2k2) " … " (pt1!…! ptkt). (*)

Here, the {pij} are all in the set pa(v) of parents of v in
the causal graph, which we will require to be acyclic
(i.e., containing no directed cycles).

Intuitively, v is true if all of the pij’s inside at least
one of the parentheses are true. This also includes as
special cases a network in which each vertex with par-
ents is either a conjunct or a disjunct of its parents.

This is a strong restriction that rules out many pos-
sible relationships between causes and effects (see dis-
cussion here). However, it is general enough to cover
most (all?) experiments considered in the develop-
mental literature while still being simple enough to
allow a relatively direct inferential method. At a crude
level, it captures the idea present in many experi-
ments that “something” (a given conjunction) makes
“it” (v) “go” (be true). There is also a close connection
to Mackie’s (1965) INUS\edq25\ model.

Let E be the set of exogenous variables and V be the
set of endogenous variables. We will define an instance
of the system to consist of an assignment of truth values
to all of the exogenous variables (i.e., those without par-
ents), which we will denote by E ! e. Because there is
an equation of the form (*) for each of the endogenous
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226 CAUSATION AND PROBABILITY

variables, an assignment of values to the exogenous
variables automatically assigns truth values to all of the
endogenous variables.

Let "X(e) be the value assigned to the endogenous
variable X when the exogenous variables are assigned e.
Similarly, we define the set of true or on variables
associated with an assignment as follows:

"T(e) ! {v | v ! V, ""X(e) ! T}

and likewise

"F(e) ! {v | v ! V, ""X(e) ! F}.

Note that we have not (and will not) put any distribu-
tion over the exogenous variables.

The following are some examples described in this
format.

Example 1: One-cause blicket detector

Exogenous variables: Block 1 present? (B1); Block 2
present? (B2).

Endogenous variable: Detector making a noise? (D).

Graph: B1 → D B2

Functional relationship: D ! B1

This is the trivial case of (*) where t ! 1, and k1 ! 1.
We have, for instance, "T(B1 ! T, B2 ! F) ! {D};
"T(B1 ! F, B2 ! T) ! { }. (Here { } indicates the
empty set.)

Notational convention To simplify notation, we
often simply describe an assignment via the subset of
exogenous variables taking on value T, it being
implicit that the remaining variables take the value F.
Thus, for example, we may reexpress the statements
as follows:

"T({B1}) ! {D}; "T({B2}) ! { }

This convention simplifies expressions, but it is also
based on the intuition that the default state for
exogenous variables is false or off. Thus, if we were
to physically implement a particular assignment, we
would only need to pay attention to those exogenous
variables assigned the value true as the remaining
exogenous variables would already be in the false
state.

Example 2: Two-cause blicket detector

Endogenous and exogenous variables are the same as
in Example 1.

Graph: B1 → D ← B2

Functional relationship: D ! B1 " B2

Here, t ! 2, k1 ! k2 ! 1.

Example 3: Twin piston engine

See Glymour, chapter XX, this volume.\edq26\

Exogenous: Key present? (K)

Endogenous: Fuel Intake 1 open? (F1); Spark? (S);
Fuel Intake 2 (F2)? Piston 1 moves? (P1); Piston 2
moves? (P2); Drive Shaft moves? (D) (see
Figure 13-A1). 

Functional relations:

F1 ! C; S ! C; F2 ! C; P1 ! F1 ! C; 
P2 ! F2 ! C; D ! P1 ! P2.

The following is an important consequence of our
restriction on the functional forms of the parent-child
relationships:

Lemma 1: If e1 and e2 are two assignments to E
such that

{X | X ! E; X assigned T by e1} " {X | X ! E; 
X assigned T by e2}

then "T(e1) " ":T(e2).

FIGURE 13-A1.

\edq26\
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In words, if Assignment e2 turns on every exoge-
nous variable turned on by e1, then at least as many
endogenous variables are turned on by e2 as by e1.

Interventions

So far, we have not described operations for interven-
ing in the system. An intervention turns an endoge-
nous variable into an exogenous variable, forcing it to
take a given value, and striking out the equation pre-
viously governing it. All other equations remain in
place. We will simply denote this via expanding our
assignment to include the intervened variables Z. By
a natural extension of the previous notation, we will
let "T(E ! e, Z ! z) be the value assigned to the
endogenous variable X under this assignment and
intervention. Likewise, the set of (remaining) endoge-
nous variables taking the value T under this interven-
tion is then represented via "T(E ! e, Z ! z).
For example, in the piston engine example, we have

"T(K ! F) ! { }, but "T(K ! F, P1 ! T, 
P2 ! T) ! {D}

expressing the fact that if the key is absent, then noth-
ing happens, but if the key is absent and we force both
pistons to move, then the drive shaft turns.

In the schemes described next, we will only ever
consider interventions that force variables to take the
true state. Thus, as before we can simplify notation by
recording only the set of exogenous variables taking the
value T and the set of endogenous variables forced to
take the value T. For example, the above statements can
be expressed as "T({ }) ! { }, but "T({P1, P2}) ! {D}.

More generally, under an assignment and interven-
tion represented by the set W ! E* # A, where E* is
a subset of the exogenous variables E, and A is a subset
of the endogenous variables V, we mean the following:

(i) Assignment of true to the variables in E*,

(ii) Assignment of false to the variables in E\E*
(i.e., those not in E), and

(iii) An intervention forcing the variables in A to
take the value true.

This notation is not fully general in the sense that
we cannot express interventions forcing endogenous
variables to take the value false or off. However, for
our purposes this is not a problem: As stated, the
learning methods we describe next only ever require
us to perform interventions forcing endogenous vari-
ables to take the value true.

We will sometimes refer to such an assignment
and intervention as an intervention on W (! E* #
A). This is a slight abuse of terminology because in
fact we are assigning to E (! E* # (E\E*)) and inter-
vening on A. However, because interventions simply
make endogenous variables exogenous, assignments
to exogenous variables may be viewed as trivial inter-
ventions.

Similarly, we will refer to the state that a given
variable X (endogenous or exogenous) takes under
E* # A: If X is in E or in A, then this is specified
directly by the intervention; if not, then X’s value is
given by "X(W). If X takes the value true under W,
then we will say that X is turned on by W. The set of
variables turned on under W consists of W #
"T(W).
Finally, we note the following properties 

Lemma 2: "T(W) " de(W), where de(W) is the
set of descendants of W.

In words, the set of endogenous variables taking the
value true under W is a subset of the descendants
of W.

Lemma 3: For any set A " V # E and any variable
X $ A,

"X(A) ! "X(A % an(X)) ! "X((A % an(X)) # W)

where W is an arbitrary subset of (V # E)\(an(X)
# {X}).

In words, the truth value taken by an (endoge-
nous) variable X only depends on the values assigned
to variables (either exogenous or intervened on) that
are ancestors of X.

Learning Indirect Causes From Interventions:
How Can I Make It Go?

We can now describe the a simple method for answer-
ing the following question: For a specific variable X in
a causal model, how do I get it to “go” with the least
effort?

We are not necessarily trying to find the direct
causes of X, we merely require a nonredundant set of
minimal sufficient causes. We formalize this question
as follows: For a given variable X, find a set A such
that A does not contain X, turning on all the variables
in A makes X take the value T, and no subset of A
makes X take the value T.
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Such a set A may be found in a simple manner:
First, try turning on each variable in turn (if necessary
by intervention) other than X itself. If successful, stop;
otherwise, try sets of size two, and so on.

More formally, we have the following algorithm.

Input: A target variable X

Output: A set A such that X ! "T(A), but for any
subset A*& A, X $ "T(A),

or failure if no such set exists.

How algorithm

For k ! 1 to | (V # E)\{X} |

For each subset A " (V # E)\{X}, such that |A| ! k

If X # "T(A), return A

Until all subsets of size k from (V # E)\{X} have
been tried.

k ! k $ 1

If k % |(V # E)\{X}|, then report failure and
return.

Failure will only occur if the target variable is in
fact exogenous or if (contrary to the assumptions of
the algorithm) we are not able to intervene on all vari-
ables in the system.

Example piston engine If we attempt to get the drive
shaft to turn (D ! T), then the algorithm will termi-
nate with k ! 1, with the set A ! {K} because this is
the only set of size 1 making the engine turn over.
Note that K is an ancestor but not a parent of D. This
will be true in general:

Lemma 4: The set A resulting from the how algo-
rithm consists of ancestors of the target variable X.

Sketch of proof Suppose for a contradiction that A
contained a variable that was not an ancestor of X.
Consider the set A* ! A % an(X). By Lemma 3,
"X(A) ! "X(A % an(X)) ! "X(A*). So, in particular,
if X ! "T(A), then X ! "T(A*). But, by hypothesis
because A contains a vertex that is not an ancestor of
A, | A* | & | A |, so the set A* would have been consid-
ered first by the algorithm, which is a contradiction.

The number of interventions required to find the
set A ! {K} in the piston example depends on the
ordering of the variables. Under the worst ordering,
we would need to perform six sets of interventions,

each forcing a single variable to take the value true. In
the best case, only one intervention is required.

Note that, in a system containing no conjunctions,
it will only be necessary to consider sets of size 1 in
the how algorithm; hence, the outer loop is unneces-
sary. This corresponds to the simple scheme of getting
into everything by which a child simply pushes each
button in turn (literally or figuratively) until the
desired effect is obtained.

Because various child-proofing schemes involve
conjunctions, we conjecture that such systems may
be harder to learn. For example, on some dishwash-
ers, when the child lock is activated, pressing any but-
ton causes two buttons to flash, which must then be
pressed simultaneously to proceed. Similarly, some
stair gates require a button to be pushed and a pedal
to be pressed simultaneously.

Learning Direct Causes From Interventions:
Why Does That Make It Go?

The how algorithm succeeds in finding an interven-
tion that makes a given variable X go, that is, take the
value true, but as we saw in the piston example, it
does not necessarily identify the direct causes or,
equivalently, the parents of X in the graph. Thus, a
causal learner might ask this as a follow-up: Given
that A makes X go, why does A make X go?

We reformulate this question as follows: Can we
identify parents of X that are turned on by A and con-
sequently turn on X? We emphasize that this is clearly
a limited answer to the question, Why does A make X
go? In particular, if A is a set of parents of X, then we
will simply return the answer that, A makes X go
because A makes X go, which, though true, is not very
illuminating.

The idea behind the algorithm is that if a set A
turns on X but does not consist solely of parents of X,
then if instead we were to turn on only the parents of
X that are turned on by A, it will lead to a reduction
in the number of variables turned on overall. Put
more formally: For a given variable X and set A that
turns on X, can we find a set P such that

(a) X $P, but X ! "T(P), that is, P turns on X;
(b) P " A # "T(A), that is, every variable in P is

turned on by A;
(c) There is no subset P* of the variables turned

on by P, that is, P* & P # "T(P), such that
X $ P*, but X ! "T(P*).
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Condition (c) states that there is no subset of the
variables that take the value true under P, which does
not contain X, and which will make X take the value
true. Note that it also follows from this that no subset
of P will make X take the value true.

Lemma 5: A set P satisfying conditions (a), (b),
and (c) will consist of parents of X that are either
descendants of A or are themselves in A.

Proof: First suppose that P is not a subset of pa(X).
Consider the set P* ! (P # "T(P)) % pa(X). Because
X ! "T(P), and by construction, the variables in
pa(X) are assigned the same values under P* as they
take under P, it follows that X # "T(P*). However,
X $ P*. Now, P* " pa(X), but by hypothesis P is not
a subset of pa(X). Thus, P* is a strict subset of P #
"T(P); hence, P does not satisfy Condition (c), which
is a contradiction.

That the variables in P are descendants of A fol-
lows from P " A # "T(A) and Lemma 2.

We now outline the algorithm for finding the set P:

Why algorithm

Input: A set A and vertex X such that X # "T(A);

Output: A set P satisfying Conditions (i), (ii),
and (iii);

0. Let P ! A;

1. For each vertex P ( P

For k ! 1 to | (P # "T(P))\{P,X} |

For each subset P* " (P # "T(P))\ 
{P,X} such that | P* | ! k

If X ! "T(P*), then let P !
P* and return to Step 1.

Until all subsets of size k from (P #
"T(P))\{P,X} have been tried.

k ! k $ 1

If k%| (P # "T(P))\{P,X}|, output P.

Step 1 attempts to remove each vertex in turn from
the set P but at the same time intervene on additional
variables that were turned on by P. If we are success-
ful in removing a given vertex from P, then we
replace P with P* and start the search all over again.

We finish by illustrating the algorithm on the pis-
ton engine example.

After running the how algorithm, we obtained the
set A ! {K}, which made the target variable D take
the value true.

Initially, P !! {K}, and there is only vertex P to
remove.

The smallest subset of "T({K})\{D} ! {F1,F2,
S,P1,P2}, which turns on D, is

P* ! {P1,P2}; thus, we set P ! P* ! {P1,P2} and
go back to Step 1.

Because P is now the set of parents of D, we are
unable to remove any vertices from the set, and
the algorithm terminates.

Exactly how many interventions are required
depends on the ordering of the variables. Under the
worst ordering, we would have to perform five sets of
interventions on sets of size 1 and then 10 interven-
tions on sets of size 2 before we found {P1,P2}, giving
15 sets of interventions total. Under the best ordering,
we would only need 6. Because there are no vertices
in "T({P1,P2})\{D}, there are no new experiments
required to confirm that this set satisfies Conditions
(a), (b), and (c).

Note that we have only uncovered some of the
causal structure. In this example, we found all of the
parents of X. In general, we would only find a subset
of the parents corresponding to one of the conjuncts
in the equation (*).

To find the whole structure of the piston engine
would require us to choose each endogenous variable
as the target (X) and then to run the how and why
algorithms in turn. Although perhaps laborious, it is
worth noting that in this way the simple intervention-
ist procedure would allow us to recover the whole
structure. In contrast, a procedure based on passive
observation leaves a large set of possible structures
(see Glymour, chapter XX, this volume).\edq27\

Relaxing the Assumption on Functional
Relationships

Two questions arise from this analysis. Could the
algorithms be extended to cover the case in which the
relations between the variables are not restricted to
disjunctions of conjunctions, for example, in which
negations of variables are permitted? Conversely, Are
there many causal structures that we encounter in our
daily existence in which the functional relationships
are not of this form?

Consider a staircase with a light and a light
switch at the top and bottom of the stairs. In the
usual manner in which such switches are config-
ured, flipping one switch while leaving the other
unchanged always changes the state of the light
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(from on to off or vice versa). A little thought reveals
that such a system implements an XOR gate, for
example, things might be wired so that if both
switches are up or both are down, then the light is
off; otherwise, it is on. This is the simplest structure
that cannot be handled in the framework consid-
ered. However, it is worth noticing that we are
almost never in a position to operate both switches at
once. As long as we only operate one switch and

regard the other as fixed in its state, then the subsys-
tem consisting of the single switch confronting us
and a lightbulb falls within our framework.

As this example illustrates, an analysis of such
structures is harder because there is less clear corre-
spondence between interventions and outcomes.
FIGURE 13-1 (a) Treatment causes outcome; (b) out-
come causes treatment; (c) treatment and outcome
have a common cause.
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\edq6\Provide first initial and date of communication.
\edq7\Provide authors for Schulz et al., in press. Cross reference to this volume; clarify which chapter and pro-
vide all authors.
\edq8\Cross reference to this volume. Provide correct chapter and authors.
\edq9\Cross reference to chapter 18. Correct chapter?
\edq10\Cross reference to this volume. Provide correct chapter(s).
\edq11\Provide correct chapter numbers and authors per APA style.
\edq12\Provide correct chapter numbers and authors per APA style.
\edq13\Indicate which Schulz et al., in press reference.
\edq14\Cross reference to this volume. Indicate correct chapter.
\edq15\Cross reference to this volume. Indicate correct chapter.
\edq16\Indicate which Schulz et al., in press.
\edq17\Cross references to this volume. Indicate correct chapters.
\edq18\Should this be Lavoisier, 1789/1994?
\edq19\Provide inclusive page numbers for Kushnir et al., 2003.
\edq20\Provide article title.
\edq21\Please mention Pearl, 1988, in text.
\edq22\Update Schulz, Gopnik, & Glymour, in press.
\edq23\Update Schulz, Sommerville, & Gopnik, in press.
\edq24\Provide publisher’s name, city, and state.
\edq25\Define INUS, if appropriate.
\edq26\Provide correct chapter number for cross reference to Glymour.
\edq27\Provide correct chapter number for cross reference to Glymour.


