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Words, kinds and causal powers: A theory theory perspective on early naming and categorization. 

 For some twenty-five years, the prevailing theories of categorization in philosophy have 

invoked the idea of  “kinds” (Putnam, 1975; Kripke, 1972). When we look at how adults use words 

to refer to categories of things we find that they only rarely categorize objects on the basis of their 

common properties. Instead, adults seem to categorize objects together when they believe that they 

belong to the same “kind”; that is, that they share some common, abstract “essence.”  Psychological 

investigations of adults have largely confirmed these philosophical intuitions, adults do seem to 

group objects together based on “kinds” rather than properties (Murphy & Medin, 1985, Rips, 

1989). 

Several investigators, particularly Gelman and her colleagues (Gelman & Markman, 1986; 

Gelman & Coley, 1990), have argued that children as young as two also categorize and name 

objects based on kinds (see also Soja, Carey, & Spelke, 1991; Mervis & Bertrand, 1994; Mandler, 

1993). Other investigators, in contrast, have suggested that young children categorize and name 

objects on the basis of perceptual properties such as shape (Landau, Smith, & Jones, 1988; Imai & 

Imai et al. 1994).  However, the question of whether children use names to refer to kinds has been 

bedeviled by the problem that the philosophical notion is not easily translatable into empirical 

predictions. In the philosophical literature, the concept of kinds refers to the idea that members of 

a category share an “essence,” a common, abstract, ontological property, and that names refer to 

this essence (Putnam, 1975). Obviously, it is difficult to ask three-year-olds if they conceive of 

objects or use names in this way. 

This methodological problem also raises a deeper question: why would adults or children 

organize the world in term of kinds? Why invoke mysterious, invisible, underlying essences when 
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perceptual properties would do? What functional or evolutionary basis could there be for such a 

cognitive practice? 

We will argue that, at least on many occasions, categorizing objects into “kinds” should be 

seen as making a claim about the common causal powers of those objects (see also Ahn et al. 2000; 

Strevens, 2000; Rehder, in press). On the causal powers view, we assume that something about an 

object causes the object’s characteristic properties. This common underlying cause is responsible 

for the correlation among the properties of the object. This common underlying cause is also 

shared by other objects of the same kind and is responsible for the patterns of correlation of 

properties among all of those objects. We can think of the “essence” of a category as a sort of causal 

placeholder. To say that members of a kind share an “essence” is to say that their characteristic 

properties are due to a common cause, even if we may not be able to exactly identify  that cause.  

Different types of causal relations may be involved in different types of “kinds”. For 

biological natural kinds such as tigers and lemons, the causal relations are likely to involve the 

detailed internal structure of the object, as well as to involve biological causal processes such as 

growth and inheritance (Gelman & Wellman, 1997). For physical or material natural kinds, they 

involve the material composition of the object (Soja, Carey, & Spelke, 1991).  For artifacts, these 

relations involve intentional causal processes, in particular, the intentions of the designer of the 

object and the goals the object is intended to serve (Gelman & Bloom, 2000; Kemler-Nelson, 1999; 

Kemler-Nelson et al. 2000a, b).  

One characteristic of kinds is that they support induction. An object that is a member of a 

kind will prove to have the same novel properties as other members of the kind (see e.g. Gelman & 

Markman, 1986). However, the justification for these inductive inferences has been rather 
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mysterious. Why would we assume that an object that has the same name as another object would 

also prove to have the same novel properties? Assuming that the common properties of  kind 

members are due to an underlying common cause licenses such inductions. If we now discover that 

members of the kind consistently have some other property in common, we can assume that that 

property is also caused by the object’s “essence”. This causal inference allows us to predict that the 

new property will also be present in new members of the kind.  

The causal powers view predicts that prior knowledge about causal relations will influence 

categorization. For example, there are several studies which suggest that for adults and even older 

children, who already know about causal relations, common causes are more likely to be important 

in defining a kind category than common effects (Ahn et al., 2000; Rehder, 1999). Common DNA 

or common internal structure is more likely to define category membership than common color, 

just because DNA or internal structure is more likely to be a cause of other properties of the object 

than color.  

But, on our view, we may also work backwards from the correlational patterns among 

properties to inferences about causal structure -- even if we don’t know exactly which causal 

mechanisms are involved. So, for example, if we notice a characteristic pattern of correlations 

among properties of objects, say that long-haired animals have slower metabolisms, and are more 

likely to be prey, we may infer that there is a common cause of all these properties, even if initially 

we aren’t sure what that cause actually is. Similarly, when several members of an existing kind, like 

cats, turn out to have a particular new property, say they are immune to foot-and-mouth disease, we 

may infer that the common essence that caused this property in one cat will also be the cause of the 

property in the other cats, even if we cannot specify that causal relation in detail.  
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Another consequence of the causal view is that the effects of an object’s “essence” will not be 

limited to properties of the objects themselves. The causal powers of the object may be responsible 

for the intrinsic properties of the object, but they will also be responsible, more widely, for causal 

effects on other objects or events. On our view, then, children and adults should pay special 

attention to the broader causal effects of objects when they categorize them. Notice that this view 

contrasts with the view that children or adults are simply registering patterns of correlation among 

the object properties themselves (see e.g., Jones & Smith, 1993). On our view, children and adults 

do pay attention to correlations among properties but their categorization is more than just a 

summary of those correlations. Instead, they use those correlations to infer causal powers. Those 

powers may have effects that extend well beyond the object itself.    

In fact, inductions about causal effects on other objects play a particularly important role in 

the philosophical arguments in favor of natural kinds. For example, consider Putnam’s classic 

“Twin Earth” arguments (Putnam, 1975). The stuff that runs in waters and streams on earth and 

on the far-away planet Twin Earth are perceptually indistinguishable, and so my twin on Twin 

Earth and I will have associated the same perceptual experiences with “water.” Nevertheless, 

unbeknownst to us, Twin Earth water really has a very different chemical composition than water, 

it is made of xyz rather than H2O. Our intuition in this case, according to Putnam, is that the 

words refer to different kinds of things, in spite of the fact that they are associated with the same 

perceptual features. How does this intuition translate into an empirical prediction? The prediction 

is that some causal effects of xyz will turn out to be different from the causal effects of H2O. This is 

how the scientists will eventually discriminate between them. In fact, in the scientific case, these 

new predictions will often turn out to involve causal relations among objects rather than intrinsic 
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properties. H2O and xyz may register differently on a spectrometer, for example, or react differently 

with other chemicals. 

We argue, then, that in our kind understanding we assume that perceptual features are 

important only in so far as they are an indicator of underlying causal powers. Hence, objects that 

look similar but appear to have different causal powers will be considered to belong to different 

kinds and will receive different names. Conversely, the fact that perceptually similar objects receive 

different names will be a cue to the fact that they belong to different kinds and have different 

causal powers. 

This interpretation of kind reasoning as a species of causal reasoning makes a great deal of 

functional and evolutionary sense. Often, in fact, usually, the causal structure of the world and the 

causal powers of objects are not immediately apparent. TV remotes make the set turn on, magnets 

make filings move towards them, water makes a plant grow, the sun makes you get sunburned, a 

snake makes you scared, but none of these causal relations are perceptually obvious. We can’t 

simply predict how an object will affect other objects by seeing what it looks like. In fact, similar 

looking objects may have different causal effects on other objects, the stereo remote doesn’t turn 

on the TV, ordinary metal doesn’t attract filings, vodka kills plants, indoor lights don’t burn you, 

garden hoses aren’t scary. Somehow we must learn about these causal powers of objects, determine 

which objects do or do not have those powers, and name them accordingly.  

Moreover, understanding hidden causal powers, and categorizing objects in terms of them, is 

extremely useful. It allows us to make important predictions about what will happen in the future, 

through the process of causal induction. It also allows us to intervene in the world effectively to 

make things happen ourselves. We can make TVs turn on or plants grow or scare our relatives. By 
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putting objects in the same group or giving them the same name we are making a powerful 

prediction about their current and future causal powers.  

Even more important, assuming that names refer to kinds allows us to quickly and efficiently 

learn about the causal powers of objects from others, and to communicate our own knowledge 

about causal powers to them. A child (or an adult) who hears that two objects have the same name 

knows much more than just that the objects look the same (which is obvious in any case). She also 

knows that the objects’ properties have a common cause and that this will lead to common effects 

in the future. 

The theory theory, causal maps and Bayes-Nets 

The idea that kinds involve common causal powers is one part of our broader conception of 

the nature of  cognition and cognitive development - and, in particular, our interpretation of  “the 

theory theory.” The theory theory is the idea that much of our adult knowledge, particularly our 

knowledge of the physical, biological and psychological world, consists of  “intuitive” or “naïve” or 

“folk” theories  (Murphy & Medin, 1985; Rips, 1989). Similarly, cognitive developmentalists argue 

that children formulate and revise a succession of such intuitive theories (Carey, 1985; Gopnik, 

1988; Keil, 1989; Wellman, 1990; Gopnik & Meltzoff, 1997; Wellman & Gelman, 1997). This 

idea rests on an analogy between everyday knowledge and scientific theories. Advocates of the 

theory theory have drawn up lists of features that are shared by these two kinds of knowledge (see 

e.g., Gopnik & Wellman, 1994). The assumption behind this work has been that there are 

common cognitive structures and processes, common representations and rules, that underlie both 

everyday knowledge and scientific knowledge. 
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Formulating the analogy between the history of science and development has been an 

important first step, but it is time to try to describe in some detail the representations and rules 

that could underpin both these types of knowledge. In order to specify both the idea of theories 

and of kinds more precisely, it is necessary to flesh out the nature of those cognitive structures and 

processes in more detail. Ideally, such an account should include ideas about the computational 

character of these representations and rules. 

We have recently begun to outline a more developed cognitive and computational account 

of the theory theory. In particular, we argue that many everyday theories and everyday theory 

changes involve a type of representation we call a “causal map” (Gopnik, 2000; Gopnik & 

Glymour, in press). A causal map is an abstract, coherent, learned representation of the causal 

relationships among kinds of objects and events in the world. These maps are analogous to the 

spatial cognitive maps used by many animals (Tolman, 1932; O’Keefe & Nadel, 1978).   

 These representations are different from some more familiar kinds of causal knowledge. 

For example, there is some evidence that certain kinds of specific causal inferences, such as 

inferences about the interactions of moving objects, are in place very early and may even be 

hardwired. For example, there is evidence that adults and children assume that when one object 

collides with another object it will cause the second object to move. Michotte (1962) showed that 

adults who see such abstract movement patterns of objects in an animated film automatically 

interpret them as causal interactions. He interpreted this as evidence for the “perception” of 

causality. Following Michotte, developmentalists have shown that infants who witness such 

movement patterns show distinctive looking-time patterns. In particular, infants who witness one 
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object collide with another seem to expect that the second object will move  (Leslie, 1982; Oakes & 

Cohen, 1995 ).  

In addition, familiar types of learning such as classical and operant conditioning may also 

be seen as involving implicit causal inferences. Many modern investigators of animal cognition 

suggest that these types of learning are effective because they capture the causal character of events 

(Shanks & Dickinson, 1987; Gallistel, 1990).  

Causal maps, however, go beyond either of these types of causal knowledge. Unlike the 

perceptual Michottean principles, these maps do not simply involve a few basic notions of folk 

physics but may involve a wide variety of novel causal relations. And unlike the Michottean 

principles, causal maps may be learned. Unlike classical conditioning, these relationships do not 

just involve a few ecologically significant events such as food or pain. Unlike operant conditioning, 

they do not just involve the organism’s own actions, but rather involve judgments of the causal 

relations among objects and events in the world that are independent of our actions upon them. 

“Everyday” or “folk” theories seem to have much of the character of causal maps. Such 

everyday theories represent causal relations among a wide range of objects and events in the world 

independently of the relation of the observer to those actions. They postulate coherent relations 

among such objects and events which support a wide range of predictions, interpretations and 

interventions. Moreover, theories, like causal maps, are learned through our experience of and 

interaction with the world around us. 

The idea of causal maps also seems to capture the scope of  “theory theories” very well. The 

theory theory has been very successfully applied to our everyday knowledge of the physical, 

biological and psychological worlds. However, the theory theory does not seem to be as naturally 
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applicable to other types of knowledge, for example, purely spatial knowledge, syntactic or 

phonological knowledge, musical knowledge or mathematical knowledge. Nor does it apply to the 

much more loosely organized knowledge involved in empirical generalizations, scripts or 

associations (Gopnik & Meltzoff, 1997). But these types of knowledge also do not appear to 

involve causal claims in the same way as folk physics, biology and psychology. Conversely some 

kinds of knowledge that do involve causal information, like the kinds of knowledge involved in 

operant or classical conditioning, do not seem to have the abstract, coherent, non-egocentric 

character of causal maps, and we would not want to say that this sort of knowledge was theoretical.  

On this view, kinds, in everyday understanding, would be the sort of entities that appear in 

causal maps. In fact, the standard view in philosophy of science is that kinds in scientific theories 

are defined by the causal relations they enter into, what is sometimes called their “causal role”. 

Gold, from a scientific point of view, is not gold because it glitters but because it has a particular, 

regular set of causal interactions with other elements, regularities that are explained by atomic 

theory. If the analogy between science and everyday understanding is correct, everyday kinds also 

should be defined by their causal role. 

  Bayes Nets 

       We have proposed, then, that children and adults construct causal maps: non-egocentric, 

abstract, coherent representations of causal relations among objects and events. There has recently 

been a great deal of computational work investigating similar representations.  The representations 

commonly called “Bayes nets” can model complex causal structures and generate appropriate 

predictions and interventions. A wide range of normatively accurate causal inferences can be made, 

and, in many circumstances, they can be made in a computationally tractable way.  The Bayes net 
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representation and inference algorithms allow one sometimes to uncover hidden unobserved 

causes, to disentangle complex interactions among causes, to make inferences about probabilistic 

causal relations and to generate counterfactuals see Spirtes, Glymour, & Scheines, 1993; Jordan; 

1998; Pearl, 1988, 2000; Glymour, & Cooper, 1999; Spirtes, Glymour, & Scheines, 2000; 

Glymour, in press). 

        This work has largely taken place in computer science, statistics and philosophy of science. 

But these computational theories might also provide important suggestions about how human 

beings, and particularly young children, represent causal information. Causal maps might be a kind 

of Bayes net. 

 The details of the Bayes net formalism are complex, but the basic logic is quite simple and 

familiar. Causal relationships between events are systematically related to patterns of conditional 

probability among those events. This fact allows us to use causal knowledge to make predictions 

about probabilities, and it also allows us to use probabilities to make inferences about causal 

relations. Take the very simplest case, where x and y are the only events. If we know that x causes y 

and we observe that x occurs, then we can predict that y will be more likely to occur. Similarly, if 

we know that x causes y and we want y to occur, we can intervene to make x occur and assume that 

y is likely to follow. Finally, if we know that when x occurs y is likely to occur, that is, we know that 

x and y are correlated, we can work backwards and infer that there is a causal relation between 

them.  

For example, suppose x is drinking wine, and y is insomnia. If I already know that drinking 

wine causes insomnia I can predict that if I drink wine I’ll be more likely to stay awake. If I want to 

stay awake I should drink wine, and if I want to avoid insomnia I should avoid wine. On the other 
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hand, if I simply observe that when I drink wine I am more likely to stay awake, I may work 

backwards to infer that drinking wine causes my insomnia..    

 The trouble, of course, is that this simple case is too simple. Introducing just one more type 

of event makes the story a lot more complex. For example, suppose we introduce z , going to 

parties. X, y and z could be related in a number of different ways. For example, z could be a 

common cause of x and y. Going to parties could make me more likely to drink wine, and it could 

also, independently, make me more likely to stay awake from sheer excitement. On the other hand,  

z could cause x which in turn could cause y, in a causal chain. Going to parties could make me 

more likely to drink wine which could make me more likely to stay awake. (see Fig. 1) 

These two different causal structures will lead to very different predictions about the 

conditional probabilities of the events and they will lead to different interventions. If I know that 

the right causal structure is A , the common cause, for example, I would predict that I will stay 

awake after a party, even if I don’t drink. If I know that it is B, the causal chain,  I would predict 

that I will only stay awake after a party if I do drink. Similarly, my techniques for avoiding 

insomnia will be quite different in the two cases.  

Conversely, different patterns of conditional probabilities among the three events will allow 

me to infer different causal structures. Simply seeing that x and y are correlated won’t tell me which 

of these two causal structures is correct - hence, of course the mantra that correlation doesn’t imply 

causation. However, I can make the right inference if I consider whether x is correlated with y 

conditional on z. For example, if I observe that wine and insomnia are only correlated when I also 

go to a party I may conclude that A is right. If I observe that wine and  insomnia are correlated 

whether or not I go to a party, I may conclude that B is right.  
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  Bayes nets generalize and formalize this kind of reasoning about the relations between 

conditional probabilities and causal structure. Bayes nets are directed graphs, like the ones in Fig. 1 

or the more complex graph in Fig. 2. The nodes of the graph represent variables, whose values are 

properties of the system to which the net applies. “Color,” for example, might be a variable with 

many possible values; “weight” might be a variable with two values, heavy and light, or with a 

continuum of values. When Bayes nets are given a causal interpretation, a directed edge from one 

variable to another, X toY, for example, says that an intervention that varies the value of X but 

otherwise does not alter the causal relations among the variables will change the value of Y. In 

short, changing X will cause Y to change.  

In a causal Bayes-Net we assign a probability to each value of each variable, subject to a 

fundamental rule, the causal Markov assumption. The Markov assumption says that if the edges of 

the graphs represent causal relations, then there will only be some patterns of conditional 

probabilities of the variables, and not others. It is a generalization of the sort of reasoning we used 

in the wine/insomnia example. The Markov assumption constrains the probabilities that can be 

associated with a network. In particular, it says that the various possible values of any variable, X, 

are independent of the values of any set of variables in the network that does not contain an effect 

(a descendant of X), conditional on the values of the parents of X. So, for example, applied to the 

directed graph in Figure 2, the Markov assumption says that the value of X is independent of {R, Z} 

conditional on any values of variables in the set {S,Y}. 

Bayes nets allow us to make causal predictions from observations. Information that a system 

has some property or properties often changes the probabilities of other features of the system. In 

the example above, for example, if I know that wine causes insomnia and I know that you have 
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been drinking, that makes it more likely to be true that you will have insomnia. Conversely, if I  

know that you have insomnia that makes it more likely that you had been drinking earlier. Such 

changes are represented in Bayes nets by the conditional probability of values of a variable given 

values for another variable or variables. Bayes net representations simplify such calculations in 

many cases. In the network above, the probability of a value of X conditional on a value of R may 

be calculated from the values of p(R | S), p(S) and p(X | S) (See Pearl, 1988). This allows us to 

predict the value of X if we know the value of  R.  Bayes-nets also provide a natural way of assessing 

and representing counter-factual claims (Pearl, 2000). 

When we intervene in the world we specifically predict the outcome of an action. The 

probabilities for various outcomes of an action that directly alters a feature are not necessarily the 

same as the probabilities of those outcomes conditional on that altered feature. Simply observing is 

not the same as intervening. In our example, for instance, if I observe that you are awake now that 

will make it more likely that you drank wine last night, but if I intervene to keep you awake now 

that won’t make it more likely that you drank wine last night.. Suppose R in the graph above has 

two values, say red and pink. Because the value of S influences R, the conditional probabilities of 

values of S given that R = red will be different from the conditional probabilities of values of S 

given that R = pink. Because S influences X, the probabilities of values of X will also be different 

on the two values of R. Observing the value of R gives information about the value of X. But R has 

no influence on S or X, either direct or indirect, so if the causal relations are as depicted, acting 

from outside the causal relations represented in the diagram to change the value of R will do 

nothing to change the value of S or X.  It is possible to compute over any Bayes network which 
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variables will be indirectly altered by an action or intervention that directly changes the value of 

another variable. (See Spirtes, Glymour, & Scheines, 1993; Glymour & Cooper, 1999). 

Bayes-nets thus have two of the features that are needed for applying causal maps: they 

permit prediction from observations, and they permit prediction of the effects of 

interventions. With an accurate causal map, that is the correct Bayes-net representation, we 

can accurately predict that y will happen when x happens, or that a particular change in x will 

lead to a particular change in y, even when the causal relations we are considering are quite 

complex. Similarly, we can accurately predict that if we intervene to change x then we will 

bring about a change in y.   

This formalism thus provides a natural way of representing causal relations, and it allows for 

their use in prediction and intervention. The formalism also allows us to work backwards from 

patterns of conditional probability to causal structure – it allows learning. Given a particular set of 

conditional probabilities among variables the formalism can tell us which causal structures are 

compatible with those probabilities. Moreover, a variety of algorithms have been designed that do 

this in a computationally efficient way. (Glymour and Cooper, 1999 ; Jordan , 1998). In fact, some 

algorithms will correctly  infer hidden unobserved causal variables based on the patterns of 

correlation of observed variables. In recent work in artificial intelligence, systems using Bayes-nets 

can infer accurate, if often incomplete, accounts of causal structure from suitable correlational data 

in fields ranging from epidemiology to mineralogy to genetics. 

The Bayes-Net formalism, then, provides a way of representing and computing normatively 

accurate causal predictions and interventions and also provides algorithms for learning causal 

structure from data. The last thirty years of research in developmental psychology have taught us 
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that even very young children know a great deal about the causal structure of the world, and can 

generate causal predictions and interventions in a wide range of domains. Some of this knowledge 

may be innate, but children also seem to learn an almost incredible amount about the causal 

structure of the world in a relatively short time. In fact, this has been one of the major 

contributions of work in the theory theory. We have proposed that children may use more 

heuristic implicit versions of the Bayes-Net computational tools to accomplish these feats (Gopnik 

& Glymour, in press; Gopnik, et al, in press).  

How could we represent the idea of kinds in this sort of formalism? We may think of kinds 

as a certain subset of variables in a causal graphical model. This subset has two characteristics. First, 

a kind variable is the common cause of a set of other variables. Second, those other variables are all 

properties common to a group of objects. So to say that an object is a member of the kind “tiger” is 

to say that there is a variable called “tiger” which is a common cause of other values of other 

properties of the same object (e.g., having stripes, being a predator, growling), and is also a 

common cause of those properties of other objects of the same category/kind. To say that an object 

is a member of a kind is to say that its features, and similar features of other members of the kind, 

have a common cause in a relevant causal graph. Reasoning about kinds, on this view, is a 

particular type of causal reasoning. 

Notice again, that this kind of representation if kinds would allow for two kinds of kind 

reasoning. First, we could use our existing causal knowledge to make kind inferences. We could 

consult our causal graph and see if there is a common cause for a set of object properties, and if so, 

what that cause is likely to be. But we could also draw conclusions about kind membership by 

simply looking at the pattern of correlations among object properties. If those patterns are 
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consistent with a “common cause” structure, we might posit a common “essence” that caused the 

properties, even if we had no prior knowledge of that causal relation.  

Naming, Sorting and Causal Induction in 2-to-4 year olds - The blicket detector 

  How do these theoretical ideas translate into an empirical research program? We predict 

that children will categorize objects together, and give them the same name, when they believe that 

the objects have common causal powers. Similarly, when children see others categorize objects 

together or give them the same name, they will assume that those objects have common causal 

powers. In fact, there is some evidence that adults and even older children categorize kinds in 

terms of causal powers in just this way (Ahn et al., 2000; Rehder, in press). Rheder has 

demonstrated empirically that they do so in a way that is predicted by the Bayes-Net formalism. 

But, of course, adults have extensive experience and often explicit training in causal inference. We 

predict that this will also be true of much younger children.  

In a series of recent experiments, we “invented” a brand new causal power of objects, 

whether or not they made a particular machine work. We constructed a new machine, the “blicket 

detector:” a box that lights up and plays music when certain objects, but not others, are placed 

upon it. This apparatus presents children with a new, never encountered causal relation, of which 

they are given direct experience with real objects. Since we had complete control over this property 

we could also directly pit it against perceptual features of objects. We could arrange to have 

perceptually identical objects that did or did not display the causal power. We then explored 

whether children would use the causal power as a basis for naming the objects and whether 

children would use names to guide their inductions about this causal power. We also explored how 

these behaviors were related to perceptual similarities and differences among the objects. 
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In these experiments, children are presented with a 5” x 7” x 3” box, made of wood with a 

red lucite top. Two wires emerge from the detector’s side. One is plugged into an electrical outlet.  

The other runs to a switchbox. If the switchbox is in the “on” position, the detector will light up 

and play music when an object is placed upon it. If the switchbox is in the “off” position, the 

detector does nothing when an object is placed upon it. During the experiment, this wire runs to a 

confederate who surreptitiously flips the switch on to allow an object to set the machine off, or 

flips it off to ensure that an object will not set the machine off. The wire and switch-box are hidden 

from the children’s view and they have no suspicion of the role of the confederate, whom they 

never see. The apparatus is designed so that when the switch is on, the box “turns on” as soon as 

the object made contact with it and continues to light up and play music as long as the object 

continues to make contact with it. It “turns off” as soon as the object ceases to make contact with 

it. This provides a strong impression that something about the object itself caused the effect. The 

“objects” can vary according to the experiment and include wooden blocks as well as more 

“natural” objects like small rocks and hardware parts. We will report the results with blocks, but in 

fact we obtained identical results with both types of objects. (see Fig.3). 

In one experiment (Gopnik & Sobel, 2000, Experiment 1), 2, 3- and 4-year-olds were 

shown four wooden blocks. The experimenter placed each block on the machine in succession, and 

then carefully returned it to its original location. Two blocks set the machine off and two did not. 

After this was demonstrated twice, children were told that one of the objects that had set the 

machine off was a “blicket.” Then the experimenter asked the child to give him the other “blicket.” 

Importantly, children were not told that the machine was a blicket detector and had no prior 

exposure to this novel causal property.  
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Children were given two types of sets of blocks, neutral sets and conflict sets. In the neutral 

sets, the blocks were either all identical, or all different. In the conflict sets, there were two pairs of 

perceptually identical objects, one member of each pair would set the machine off and the other 

would not. Here, the perceptual features of the object actually conflicted with the objects’ causal 

powers. (see Fig. 3) 

 In the neutral tasks, even the 2-year-olds categorized the object on the basis of its causal 

power. In the conflict tasks, 2-year-olds chose as the other “blicket” the perceptually similar object 

more often than the causally similar object, but still chose the causal object more frequently than a 

distractor object. The 3- and 4-year-old children were equally likely to choose the causally or 

perceptually similar object as the “blicket” (see Fig. 4). 

In a control condition (Gopnik & Sobel, 2000, Experiment 2), the same machine and 

objects were presented to other children of the same ages with the same procedure. However, in 

this condition the object did not appear to be causally related to the machine. Instead of placing 

each object on the machine, the experimenter would hold each object over the machine. For two of 

the objects, he would simultaneously press the top of the detector with his hand, which activated it. 

For the other two, he simply held his hand near the top of the detector, but did not press it and 

nothing happened. Children were then told that one of the blocks which had been associated with 

the machine’s activity was a “blicket” and were asked to show the experimenter the other “blicket.” 

In contrast to the first experiment, children of all ages chose at chance in the neutral tasks and 

used the perceptual properties of the object as a basis for categorization in the conflict tasks. 

Children would not categorize an object as a “blicket” based on a mere association between that 
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object and the machine’s activation by the experimenter (see Fig. 5). They would only categorize 

when there appeared to be a causal  relation between the block and the machine.  

In a second condition, we showed that children would not only use causal powers as a guide 

to names, but would also use names as a guide to causal powers. In this experiment, we told 

children that two of the objects were called “blickets” and two were not. The experimenter then 

picked up one of the “blickets” and showed that it activated the machine. The children were asked 

to choose “another one that will make the machine go.” Thus this experiment was analogous to 

Gelman et als.. induction studies, but with real objects displaying real novel causal powers. Again 2-

, 3- and 4-year-olds predicted that the objects with the same name would have the same causal 

powers in the neutral condition. The 3- and 4-year-olds clearly did this even in the conflict 

condition when this prediction conflicted with a perceptual categorization (e.g., when one “blicket” 

was a green square and the other was a red cylinder, while the two non-“blickets” were also a green 

square and a  red cylinder). This effect was less strong for the 2-year-olds (see Fig. 6). 

It is important to say that children, particularly 2-year-olds, did sometimes use perceptual 

features as a basis for categorization or induction in the conflict conditions. However, it turned out 

that these children also tended to misremember the causal information or the object’s name. Many 

of the 3- and 4-year-olds, and most of the 2-year-olds, who said that the perceptually identical object 

was the “blicket,” also said, incorrectly, that that object had set off the detector. Similarly, when 

they predicted that the perceptually identical object would activate the detector, they also tended to 

say, incorrectly, that that object had been called a “blicket.” That is, if they said that the two green 

squares were both “blickets” they were also likely to say, incorrectly, that both green squares had set 
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off the machine. Conversely, if they said that the two green squares would both activate the 

machine, they were also likely to say, incorrectly, that they had both been labeled as “blickets.” 

 This suggests that names and causal powers may have been linked even for children who 

made a perceptual response. These memory errors may suggest that children, and particularly the 

younger children, assume that perceptual, causal and linguistic properties are correlated. In fact, of 

course, this is usually true, and the inference from common features to common causal powers is 

correct. Most of the time when objects have the identical shape, color, and size they also have the 

same causal powers. For these children, this fact guides not only their categorizations and 

inductions, but also their memory. They seem to assume that the identical objects must have the 

same causal powers, and simply ignore the data to the contrary. In contrast, if children were simply 

using a purely perceptual strategy to categorize, name, and make inductions about objects, these 

errors are puzzling. 

In a second study, we set out to test this hypothesis about memory errors more systematically 

(Nazzi & Gopnik, 2000). In earlier studies, investigators in the shape vs. kind debate had shown 

that either perceptual or non-perceptual cues may be used in categorization, but no one had 

systematically pitted these cues against one another. The Gopnik and Sobel study suggested that 

younger children might rely more heavily on perceptual cues than older children but there were no 

significant age effects, only a trend. Moreover, it was possible that the memory errors occurred 

simply because children were confused about the task. In this study, we followed exactly the same 

procedure as in Gopnik and Sobel but added a memory control task at the start of each session: 

children were simply asked to report which object had set off the machine, without also 

categorizing the objects. All the children did well on this task. We also used a smaller range of 
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children at each age, comparing 3½ and 4½-year-old children born within a 2-3 months range. This 

allowed us to reveal an age effect, with younger children making more perceptual responses than 

older children.  

The memory errors showed that almost all of the age effect was due to the fact that younger 

children were more likely to assume a correlation between perception and causation than older 

children. Children in each age group said that the perceptual object was a “blicket” but correctly 

remembered that it had not set off the machine about 20% of the time. However, the younger 

children falsely reported a correlation between the perceptual and causal features of the objects 

(e.g., they said that the perceptually similar object both was a “blicket” and had set off the machine 

before)  46% of the time. The older children only made this error 12% of the time. 

This suggests that the developmental effect is not simply due to a shift from perceptual to 

causal responding. Rather the younger children appeared to treat perceptual cues as a guide to 

causal ones, to the point of misremembering cases were those cues are not correlated. This may 

also help to explain the debate in the literature. In real life, perceptual cues, and particularly shape, 

are highly correlated with causal powers. Other things equal, objects with the same shape are also 

likely to have similar causal powers.  Children may, in fact, use shape to categorize and name 

objects. However, they may do so almost entirely because for them shape is a good predictor of 

causal powers. When the data shows them that shape and causal powers conflict they either 

reinterpret the data (at three) or prefer causal powers (at four). 

Sorting, naming and causal powers  

So far we have talked about two indices of categorization, naming and causal induction, and 

we have shown that these two phenomena are closely related in children as young as 30 months 
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old. When children know that objects have the same causal powers they predict that they will have 

the same name and vice-versa. Another, non-linguistic, index of categorization is manual sorting, 

children will put similar objects in the same location. How are these three indices of categorization 

-- sorting, naming and causal induction, related to one another? 

We designed a  simplified “blicket detector” paradigm to ask this question for 30-month-olds 

(Nazzi, 2001; Nazzi & Gopnik, in preparation). In this paradigm children saw the experimenter 

place three perceptually different objects on the detector, twice in a row. Two of the objects 

consistently activated the detector and one did not. The experimenter then picked up one of the 

active objects and presented the child with the other two objects. In the sorting condition, he 

visibly placed one of the active objects in one hand and asked “Can you give me the one that goes 

with this one?” Thus, in this condition, children had to put the causally similar objects in the same 

location, rather than to give them the same name. In the action condition, he asked the child to 

actually make the machine work (“Can you make it work?”), testing whether children really had 

inferred the causal power of  the objects correctly. We also included a control condition, just like 

the control in the Gopnik and Sobel (2000) study we described above. In this condition,  the 

experimenter held the objects up over the detector and then either pressed the top of the detector 

to activate it, or held his hand near the machine, but did not activate it. 

Thirty-month-olds consistently used the causal powers of an object to sort the objects, just as 

they did to name the objects. 78% of the time they placed together objects that had made the 

detector work and 79% of the time they correctly predicted that the object would make it work 

again. This suggests that there is not only a link between causal induction and naming, but 

between causal induction and categorization more generally. Moreover, as in Gopnik and Sobel 
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(2000), 30-month-old children did not physically sort objects together or use them to activate the 

machine when the objects were simply associated with the machine in a non-causal way. They were 

at chance in both tasks. This again suggests that children are reacting to causal powers and not 

mere associations. 

These experiments, then, demonstrate that children’s understanding of the structure of kinds 

develops between 30 months and 4½ years of age, by which time they have reached something 

similar to the adult conception. In particular, we have converging evidence that children this young 

will give perceptually different objects the same name, and sort them together, when they have the 

same causal powers. Similarly, they will use naming as a guide to causal induction even without 

perceptual cues. Even in cases where perceptual categorization conflicts with causal categorization, 

the younger children will sometimes, and the older children will usually, rely on causal cues. And 

even when, in conditions of conflict, perceptual cues are used, those cues seem to be correlated 

with causal powers. Moreover, and importantly, children will not just categorize on the basis of any 

type of similarity. When objects are merely associated with effects but do not actually cause them, 

children will not use those associations as a basis for naming or sorting the objects. 

In fact, the crucial developmental change in this period appears to be a loosening of  initially 

tight correlations between perception and causation. The younger children seem more inclined to 

believe that perceptual, linguistic and causal similarities will be correlated, while the older children 

seem more willing to imagine that perceptual cues could conflict with linguistic or causal cues.  

Naming and sorting in 18 month olds 

What about even younger children? In a further experiment with “the blicket detector,” we 

did not find similar effects with 24-month-olds (Nazzi, 2001; Nazzi & Gopnik, in preparation). 
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This seems to go against the idea that younger children have a similar understanding of kinds and 

causal powers. However, this conclusion might be too strong. First, it cannot be totally excluded at 

this point that the failure of the 24-month-olds is due to the attention and memory demands of 

this task. Second, in other studies, we have explored two abilities that do emerge in younger 

children and that may be indicators of, or at least prerequisites for, “kind” understanding. These 

are the ability to sort all the objects in a group into multiple categories and the ability to sort 

perceptually dissimilar objects together when they receive the same name. 

A number of studies dating back to the seventies demonstrate some important changes in 

children’s sorting behavior at about 18 months.  From about a year of age, children will categorize 

objects by placing similar objects in the same location.(Ricciutti, 1965; Nelson, 1973; Starkey, 

1981; Sugarman, 1983; Gopnik & Meltzoff, 1987, 1992;). In these studies, children are given a 

mixed group of objects (e.g., four identical yellow rectangles and four identical clear pill-boxes) and 

are allowed to spontaneously manipulate those objects. Children as young as nine months of  age 

will place the similar objects in one group in the same location. However, while this behavior 

might be indicative of categorization, it might also just reflect a preference for one type of object 

over another. It is only at about 18 months that children will systematically and exhaustively sort all 

the objects in a group into separate locations. We demonstrated that children will also do this 

when the objects in each group are not identical but belong to the same “basic-level” category, 

using for example a set of four different rings and four different pencils. We also suggested that 

this ability might be related to an understanding of “kinds” (Gopnik & Meltzoff, 1992)..  

We also demonstrated that there was a close empirical connection between this sort of 

exhaustive sorting and naming. In longitudinal studies, children began to systematically and 
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exhaustively sort objects into multiple categories (Gopnik & Meltzoff, 1987) a week or so before 

they had a “naming spurt” -- a sudden sharp increase in their naming vocabulary. In cross-sectional 

studies, similarly, the ability to exhaustively sort objects into multiple categories was highly 

correlated with the number of names children used, and with their mothers’ report of a naming 

spurt (Gopnik & Meltzoff, 1987, 1992). Moreover, this relationship was quite specific, it remained 

strong even when age was held constant, and there was no parallel relation between the naming 

spurt and other cognitive developments that take place at about the same time such as  means-ends 

and object permanence achievements (Gopnik & Meltzoff, 1992). Mervis and Bertrand (1994, 

1995, 1997) replicated this finding both with typically developing children and children with 

Down’s syndrome. Interesting, they did not find this relation in children with Williams’ syndrome 

who appear to approach language development in a way that is very different from these other 

groups. Mervis and Bertrand (1994) also showed that exhaustive sorting was related to the 

achievement of “fast mapping:” Children who produced exhaustive sorting were also more likely to 

quickly learn to attribute new words to unnamed objects. 

The fact that the naming spurt and the new categorization abilities occurred so closely 

together suggested an intriguing possibility - perhaps the emergence of the new linguistic ability to 

learn names itself facilitates a cognitive change in children’s sorting abilities. In fact, this relation 

between naming and sorting parallels two other independent relations between language and 

cognition in this period. In even earlier work, we demonstrated parallel relations between the 

acquisition of words for disappearance, such as “allgone,” and object-permanence abilities, and of 

words relating to action, such as “uh-oh,” and means-ends abilities (Gopnik, 1982, 1984, Gopnik 

& Meltzoff, 1984). We have argued that in all these cases the linguistic and cognitive abilities may 
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emerge in tandem and be mutually facilitating – the cognitive developments spark the linguistic 

acquisitions and the linguistic developments also strengthen the cognitive changes (Gopnik & 

Meltzoff, 1997). 

Particularly dramatic evidence for this sort of “neo-Whorfian” link between naming and 

sorting comes from cross-linguistic studies. Korean relies much more heavily on verb morphology 

than English and often omits nouns. In a series of studies, we found that Korean-speaking mothers 

used significantly fewer nouns in their speech to children than English-speaking mothers (Gopnik 

& Choi, 1990, 1995; Choi & Gopnik, 1995; Gopnik, Choi, and Baumberger, 1996). In turn, 

Korean-speaking children used significantly fewer nouns and more verbs in their own early 

language than English-speakers, a result replicated by Tardif et al. (1999) for Mandarin-speakers. In 

fact, the Korean-speakers, and also Mandarin-speakers, often used verbs at the same time or before 

they used nouns, a definitive refutation of the widespread idea that nouns precede verbs in 

development.  

More significantly for the current argument, however, the cognitive development of the two 

groups of children also differed (Gopnik & Choi, 1990; Gopnik et al., 1996). The Korean-speakers 

began to produce exhaustive sorting significantly later than the English-speakers. Just as 

importantly, however, this effect was not due to some across-the-board cognitive delay. The Korean-

speaking children were actually advanced in means-ends understanding compared to the English-

speakers. Means-ends abilities, which involve an understanding of skilled goal-directed action, are 

conceptually more closely related to the verbs that play a prominent role in early Korean 

vocabularies. This cross-linguistic result suggested a quite specific link between the experience of 

hearing many new names and the tendency to sort objects into groups. The most plausible 
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explanation for this finding was that the linguistic differences in the input to the children actually 

caused the cognitive differences. Hearing new names might lead children to categorize and sort 

objects in a new way. 

In a more recent experiment (Nazzi & Gopnik, 2001), we tested this idea further by 

exploring whether hearing that objects were given the same name would actually lead children to 

sort those objects together. Could we demonstrate an effect of naming on sorting more directly? 

Sixteen- and 20-month-olds were given triads of objects that were completely different perceptually. 

In one condition, two of the objects were given the same name by the experimenter and a third 

object was given a different name. Then, just as in our earlier sorting experiment, the experimenter 

put one of the two similarly-named objects in his hand and asked “Can you give me the one that 

goes with this one?. Twenty-month-olds, but not 16-month-olds, physically sorted the objects with 

the same name together.  

Moreover, this ability was related to vocabulary size. Not only did the 20-month-olds have 

significantly larger vocabularies than the younger children, but among the 20-month-olds 

vocabulary size was highly correlated with performance on the sorting task. This suggests that the 

capacity to sort objects into entirely new non-obvious categories based on names may itself be 

related to the naming spurt.   

In a control condition, children received a visual categorization task, in which two of the 

objects were perceptually similar, and no names were used. As one might expect 16-month-olds and 

20-month-olds performed equally well on this task and there was no correlation to vocabulary size. 

  In summary, then, both the capacity to sort objects exhaustively into multiple categories and 

to sort perceptually dissimilar objects together on the basis of a common name seem to emerge at 
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around 18 months. Both these abilities seem to be related to children’s own productive naming 

vocabulary. Moreover, there is evidence, from the cross-linguistic studies, that the experience of 

hearing names may actually contribute to these sorting abilities.  

Both these abilities also seem to be related to kind understanding. In multiple-category 

sorting children seem to go beyond simple perceptual generalizations. Instead, these children seem 

to assume that all objects belong in some category or another.  The capacity to sort completely 

dissimilar objects into a common category is even more obviously related to kind understanding. 

Indeed, the very nature of kind understanding involves this ability to go beyond perceptual 

similarities and dissimilarities and to categorize objects together in a more abstract way. 

We do not know how these early sorting abilities are related to an understanding of causal 

powers. In Gopnik & Sobel (2000) and Nazzi (2001), we did not find the first signs of causal 

categorization until 30 months. It may be that the earlier types of understanding are prerequisites 

for a causal powers view of kinds, or it may be that such a view emerges in tandem with these 

abilities, and we have not yet designed a way to test it. Some support for the first alternative comes 

from the Gopnik and Sobel (2000) finding that it was easier to predict causal powers from the 

names given to objects, than to give the same name to objects having similar causal powers. It is 

possible that children’s experiences with language, particularly the experience of hearing the same 

name applied to perceptually dissimilar objects, itself leads them to look beyond perceptual 

similarities, and that this, in turn, leads them to the idea of categorizing objects in terms of causal 

powers. 

Kind understanding before 18 months. 
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Thus, we see development between 30 months and 4½ years leading to something very much 

like full-blown kind/causal power understanding, and we see some of the first signs of an 

understanding of kinds emerging at 18 months in tandem with the emergence of a naming spurt. 

What about even younger, preverbal, infants? Here, the picture seems to us much murkier. It is 

clear that, from birth, infants can individuate and identify objects. Like other organisms, infants 

can also discriminate among objects perceptually and can make perceptual generalizations.  

It is also clear that, at least from very early in development, and quite possibly from birth, 

infants can make certain kinds of causal predictions and interventions, and can learn about new 

causal relations. This capacity seems clear from the extensive literature on young infants 

understanding of principles of folk physics (see e.g., Bower, 1974; Baillargeon, 1995; Leslie, 1982; 

Oakes & Cohen, 1995; Spelke et al., 1992), and also from the earlier literature on infants 

understanding of contingency (Watson, 1987) and the emerging literature on infants’ 

understanding of the actions of others (Meltzoff, 1995; Woodward, 1998; Gergeley, 1995). It seems 

that very young infants know that certain objects will have consistent causal effects on others in 

regular ways, and they also know that their own actions and the actions of others will have certain 

regular causal effects (see also Younger and Rakison, this volume).  

We do not know, however, when children begin to combine their perceptual categorizations 

of objects and their causal knowledge. When do children first conceive of categories of spatially 

individuated, distinct, objects that nevertheless have common underlying causal powers, and that 

will have similar causal powers in the future? Many of the early types of causal understanding do 

not seem to have this character. Rather than seeing object categories as the sorts of things that 

define causal powers, infants initially appear to focus on movement paths and trajectories, for 
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objects, or patterns of intentional action, for people. Certainly, to our minds there is no clear 

evidence in early infancy that children go beyond perceptual similarities and differences in their 

object categorizations, though those similarities and differences may sometimes be quite general or 

abstract (as in the types of categorization reported by Mandler et al., 1995). On the other hand, this 

question has yet to be tested in an appropriate and systematic way. 

There is some evidence that towards the end of the first year children do begin to link their 

perceptual categorizations and their causal inductions. This evidence comes from a study of 

children’s exploratory behavior (Baldwin et al., 1993). In this study, 9-to-26-month-old infants saw 

an unexpected novel causal property of an object (e.g., a can that made a cow noise when it was 

turned over). Then they were presented with perceptually similar objects that did not exhibit this 

property. Children explored those objects in a way that suggested that they were surprised by this 

fact. They seemed to expect the original causal property to generalize to the new objects. 

This kind of linkage between perceptual and causal similarity might be the first emergence of 

the sort of conception of kinds that we see quite clearly in 30-month-olds. Recall that these older 

children seemed to think that perceptual similarities and causal powers are tightly correlated. 

However, this linkage must, paradoxically, be loosened in order to develop a full conception of 

kinds.  

Learning 

We might propose then a three-stage understanding of the link between perceptual and 

causal categorization, producing a kind of u-shaped curve. The youngest infants might simply see 

no relation at all between perceptual object categorization and causal prediction. The older infants 

and young toddlers might begin to link these cues. They begin to believe that perceptual similarity 
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will predict causal similarity. Only the older 3- and 4-year-olds, however, begin to believe that while 

this linkage usually holds, it can be broken, and this is due to deeper facts about the essences of 

objects. 

An interesting possibility is that language itself is a major factor in these changes in children’s 

developing understanding of kinds and causal powers. There is evidence that towards the end of 

the first year, linguistic cues may focus infants attention on perceptual similarities among objects 

(see e.g., Waxman & Markow, 1995; Woodward, Markman, & Fitzsimmons, 1994) . In these early 

cases, however, the language cues seem simply to be facilitating types of perceptual generalization 

that children can make independently. Nevertheless, this sort of linguistic effect might be the first 

step in a process of leading children to place objects together in a more abstract and profound way. 

We see this in our 20-month-old’s ability to use names to categorize objects even in the absence of 

perceptual similarities at all (Nazzi & Gopnik, 2001). Similarly, in unpublished work, Baldwin has 

found that linguistic cues facilitate the exploratory causal inductions of children, at least, at 20 

months of age (Baldwin, personal communication). Twenty-month-old children who heard that 

two partially similar objects were given the same name were more likely to predict that they would 

have the same novel non-obvious causal property. 

In fact, children might realize that the link between perception and causal inference can be 

loosened precisely because of the fact that there is also a link between the names of objects and 

their causal powers. Learning names sets up a kind of three term relationship between perceptual 

similarities, causal powers and names. Names give children a way to state a causal power similarity 

that is decoupled from a perceptual similarity. We see the first step in this process in our 20-month-

old’s ability to use names to establish categories in a way that goes beyond perceptual similarity. By 
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three or four, these children are also able to relate those name-based categories to causal powers in 

a way that completely bypasses perceptual similarity. 

Similarly, the insight of the naming spurt, namely the realization that all things have names, 

may be related to the insight that all objects belong in categories, an insight that seems to underlie 

exhaustive sorting. Empirically, these two developments are closely related. Moreover, in the cross-

linguistic work we have demonstrated a direct effect of language input on exhaustive sorting. 

If we are correct that there are these developmental changes in children’s understanding of 

kinds and causal powers, where do those changes come from? Is a causal powers view of 

categorization innate? If not, what learning mechanisms propel children to develop a conception of 

kinds and causal powers?  

This last question, the question of mechanisms of learning, seems to us to be the crucial 

question we should be addressing in cognitive development in general. Fortunately, in the case of 

causal categorization, reasoning, inference, and induction, there are parallel developments in 

philosophy and computer science that may be particularly helpful. The formalism of graphical 

causal models, as we saw earlier, provides powerful, formal, techniques for making accurate causal 

inferences. In particular, within the Bayes-Net framework, it is possible to construct algorithms that 

infer causal structure from patterns of correlation among events. These algorithms are provably 

accurate and, at least in many cases, computationally efficient. The formalism provides powerful 

tools for reliably inferring causal structures from patterns of evidence.  

We are just beginning to explore whether very young children actually use implicit versions 

of these computational learning procedures. In a recent set of experiments, we have discovered that 

children can determine the correct causal categorization of objects, that is, can determine which 
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objects are “blickets” by employing some of the same basic axioms as these computational systems 

(Gopnik et al., in press). Two, three and four year old children could accurately infer the causal 

powers of an object by considering the patterns of variation and covariation between that object, 

other objects, and the “blicket” detector’s behavior.  

This sort of learning might also be responsible for some of the broader developmental 

changes in children’s categorizations that we described. One way of thinking of the learning 

process is that children are driven to look for ever deeper and more powerful causal analyses of the 

world around them. There will be significant and informative patterns of correlation among the 

perceptual features of objects, the names they are given, and their causal effects. Children may be 

detecting and using these patterns of correlation to make causal predictions and inductions. In 

particular, children may reason backwards from the patterns of correlation among perceptual and 

linguistic features of objects and their effects on other objects to infer underlying causal powers of 

those objects.  

Note that the claim is not that children are simply covariation detectors or that they match 

patterns of correlation in the input in their own behavior (as proposed by, Jones & Smith. 1993, 

Smith et al. 1996). Rather, we would argue that children use covariation information in 

combination with other kinds of knowledge, in order to uncover underlying causal structure. 

Conclusion 

We have argued that “kinds” can be usefully understood as groups of objects with common 

current and future causal powers. This conception stems from our general conception of intuitive 

theories as “causal maps”: abstract representations of the causal structure of the world. In a series of 

empirical studies, we have shown that children do categorize and name objects based on their 
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causal powers, from at least 30 months of age. Even younger children, around 18 months old, 

already show the ability to sort objects into multiple, exhaustive categories and to sort entirely 

perceptually dissimilar objects together when they are given a common name. These abilities do 

not appear to be present in younger infants. They also seem to be highly correlated with the 

acquisition of names and particularly with a naming spurt. 

There also seem to be important changes in children’s kind understanding. We suggest that 

the youngest infants may not relate perceptual similarities among objects and causal powers at all. 

At a later stage, from about a year until about three or four, children do seem to predict strong 

correlations between perceptual similarities and causal powers. However, with the acquisition of 

language, children may have the further realization that names are correlated with causal powers in 

a way that may bypass perceptual similarities. Eventually, this may be what leads them to a deeper 

conception of underlying essences. 

Causal inference, induction and learning seem to us particularly promising avenues of 

investigation for several reasons. Empirically, we have discovered that causal understanding plays 

an important and deep role in a great deal of children’s early knowledge, including their knowledge 

of categories. From a functional and evolutionary perspective, causal understanding is profoundly 

adaptive. And methodologically, the problem of causal inference is an area where powerful formal 

and computational tools and techniques are available. Such tools may help us make real progress 

towards a developmental science that is both genuinely developmental and genuinely scientific. 
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  B. Parties cause wine-drinking which causes insomnia 

Y X 

Z  X Y

A. Parties are a common cause of wine-drinking and insomnia 

Fig. 1. Two alternate causal structures for three variables. 
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Fig. 2. A causal graph 
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