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Abstract

Previous research suggests that children can infer causal relations from

patterns of events.  However, what appear to be cases of causal inference may

simply reduce to children recognizing relevant associations among events, and

responding based on those associations.  To examine this claim, in

Experiments 1 and 2, children were introduced to a “blicket detector”, a machine

that lit up and played music when certain objects were placed upon it.  Children

observed patterns of contingency between objects and the machine’s

activation that required them to use indirect evidence to make causal

inferences.  Critically, associative models either made no predictions, or made

incorrect predictions about these inferences.  In general, children were able to

make these inferences, but some developmental differences between 3- and 4-

year-olds were found.  We suggest that children’s causal inferences are not

based on recognizing associations, but rather that children develop a

mechanism for Bayesian structure learning.  Experiment 3 explicitly tests a

prediction of this account.  Children were asked to make an inference about

ambiguous data based on the base-rate of certain events occurring.  Four-

year-olds, but not 3-year-olds were able to make this inference.
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Children’s causal inferences from indirect evidence:

Backwards blocking and Bayesian reasoning in preschoolers

As adults, we know a remarkable amount about the causal structure of

the world.  Much of this causal knowledge is acquired at a relatively early age.

Before their fifth birthday, children understand complex causal relations in folk

physics (e.g., Baillargeon, Kotovsky, & Needham, 1995; Bullock, Gelman, &

Baillargeon, 1982), folk biology (e.g., Gelman & Welman, 1991; Inagaki &

Hatano, 1993), and folk psychology (e.g., Gopnik & Wellman, 1994; Perner,

1991; Wellman, 1990).  This research has demonstrated that young children

know a great deal about causality and that their causal knowledge changes

with age.  However, this research has not fully explained how causal knowledge

is represented, and more significantly, how it is learned.

The experiments presented here attempted to discriminate among

potential mechanisms for causal learning.  To do this, we used an

experimental set-up in which children were exposed to particular patterns of

evidence about a new causal relation, and were asked to make inferences

about that relation.  The way children make inferences in this novel

experimental setting could shed light on what mechanism for causal learning

they have in place.  These mechanisms might be involved in the causal

learning we see in the development of everyday physical, psychological, and

biological knowledge.

We propose that children must draw on two sources of knowledge to

make causal inferences.  First, children apply their existing knowledge of
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causal mechanisms to observed data.  For example, if children think that

beliefs and desires cause actions, then when they see a new action they might

try to understand that action in terms of beliefs and desires.  This substantive

causal knowledge can range from specific prior knowledge applicable to the

current situation (as in the case of beliefs and desires above), to relatively

general assumptions about causality (e.g., that causes precede effects – a

piece of knowledge that potentially discriminates which events are causes and

which events are effects).  Some of this knowledge may be innate (such as

certain aspects of physical causality, see Spelke et al., 1992); other pieces of

knowledge may be acquired throughout development.

There is evidence that children do use their existing knowledge of causal

mechanisms to learn new causal relations and make causal inferences (Ahn et

al., 1995, 2000; Bullock, Gelman, & Baillargeon, 1982; Shultz, 1982).  For

example, in all of Shultz’s (1982) generative transmission studies –

traditionally cited as paradigmatic of children using mechanistic information –

participants were first trained about what potentially caused the effect (e.g.,

that in general, flashlights cause spots of light to appear on the wall).  Children

relied on this prior physical knowledge to make new causal inferences.

Children must also rely on a second source of knowledge when making

causal inferences: a mechanism that infers the causal structure of events from

data.  How might this mechanism work?  The literature on causal learning in

adults proposes a number of specific models that might underlie this sort of

learning  (e.g., Cheng, 1997, 2000; Dickinson, 2001; Shanks, 1995; Tenenbaum
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& Griffiths, 2001; Van Hamme & Wasserman, 1994).  Adults, however, often

have extensive experience and explicit education in causal inference and

learning.  We do not know whether children use such mechanisms to acquire

causal knowledge.  The goal of this paper is to discriminate among these

possible mechanisms.  By doing so, we potentially provide an account of

children’s causal learning and their representation of causal knowledge.

This project, however, assumes that young children can accurately relate

patterns of data to causal structure.  Some investigations have suggested that

children have difficulty understanding how patterns of data relate to causal

relations (Klahr, 2000; Kuhn, 1989; Schauble, 1990, 1996).  In these

experiments, children were required to construct experimental manipulations or

state what kinds of evidence would be necessarily to falsify a hypothesis.

Schauble (1996), for example, found that both fifth graders and naïve adults

had difficulty designing unconfounded experiments to learn how a set of

features (e.g., body shape, engine size, the presence of a tailfin) influenced the

speed of a racecar.  Although learning did occur over time, both children and

adults were relatively impaired in their hypothesis testing and were not able to

quickly learn new causal structures.

These scientific reasoning studies suggest that young children have

difficulty explicitly stating what evidence would be required to test particular

hypotheses.  However, young children might still be able to draw accurate

causal conclusions from patterns of evidence.  Children might be able to

recognize causal relations from data without having the metacognitive
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capacity to recognize that this particular piece of data was necessary to make

a conclusion among several causal hypotheses.  Likewise, children might be

able to draw accurate conclusions from unconfounded experiments, even if

they are unable to design those experiments in the first place.  The learning

mechanism that we will describe, therefore, should not be taken as a

metacognitive description of children’s causal learning and inference, but

rather as a description of how children might interpret data that they observe.

Classes of Causal Learning Mechanisms

We will outline four classes of mechanisms for learning causal relations

from patterns of evidence.  These mechanisms range from the relatively simple

mechanisms of association found in the classical conditioning literature (e.g.,

Rescorla-Wagner, 1972) to mechanisms based on the general learning

algorithms used in contemporary artificial intelligence (e.g., Pearl, 1988, 2000;

Spirtes, Glymour, & Scheines, 1993, 2001).

1) Learning associations. Children might simply associate causes and

effects, in the same way that animals associate conditioned and

unconditioned stimuli in classical conditioning (Rescorla & Wagner, 1972;

Mackintosh, 1975).  On this view, there is nothing to understanding causality

beyond recognizing associations.  These models assume that candidate

causes and effects have been identified, typically based on substantive

information such as temporal priority, and output the strength of each cause-

effect association.  Since these models only output associative strengths, they
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make no predictions about how people can use causal knowledge to generate

interventions to elicit effects.

2) Inferring causal relations from associations.  In generalizing the

associative approach outlined in #1 above, some have suggested that causal

learning takes place by calculating the associative strength among events,

based on an associative model such as the Rescorla-Wagner equation, but

then translating that associative strength into a measure of causal strength.

That measure of causal strength might then be combined with other types of

information to make causal inferences or generate new interventions (see e.g.,

Cramer, Weiss, Williams et al., 2002; Dickinson, 2001; Dickinson & Shanks,

1995).  In response to the discovery of a set of learning paradigms that the

Rescorla-Wagner model has difficulty accounting for, advocates of this

approach have suggested alternative mechanisms for calculating causal

strength (e.g., Krushke & Blair, 2000; Van Hamme & Wasserman, 1994;

Wasserman & Berglan, 1998).  Because of the transformation of associative

strength to causal strength, these alternative associative mechanisms do

provide a basis for causal inference and intervention.

3) Rational parameter estimation models.  Other investigators have

proposed that causal learning relies on the estimation of causal parameters

based on the frequency with which events co-occur.  Two prominent proposals

in this category are the DP model (Allan, 1980; Jenkins & Ward, 1965; Shanks,

1995) and the Power PC model (Cheng, 1997, 2000).  These models calculate

an estimate of the maximal likelihood value of the strength of a presumed
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causal relationship given a set of data (Glymour, 2001; Tenenbaum & Griffiths,

2001).  This distinguishes these models from those described in #2 above;

they estimate the strength of a particular causal model – the probability that an

effect occurs given a cause and some background information.  The models in

#2 only estimate these strength parameters weakly or at asymptote.  For

instance, under certain conditions, Rescorla-Wagner can be shown to converge

to DP in the limit of infinitely many, randomly intermixed trials (Cheng, 1997;

Danks, in press; Shanks; 1995).

 4) Learning causal graphs.  Children might construct a “causal graph” –

an abstract representation of the causal structure of a set of variables – based

on evidence about the conditional probability of those variables (Glymour,

2001; Gopnik, 2000; Gopnik & Glymour 2002; Gopnik, Glymour, Sobel, Schulz,

Kushnir, & Danks, in press; Steyvers, Tenenbaum, Wagenmakers, & Blum,

2003; Tenenbaum & Griffiths, 2003).  Mathematical theories of causal graphs,

often called “causal Bayes nets”, have been developed in computer science,

philosophy, and statistics (Glymour, 2001; Pearl, 1988, 2000; Spirtes,

Glymour, & Scheines, 1993, 2001).  Several different algorithms for learning

causal graphs have been proposed within this general framework.  We will not

review the entire literature on causal learning using this framework in this paper

(see Gopnik et al., in press, for one such review).  Instead, we will focus on a

specific graph-learning algorithm that relies on Bayesian inference and

particular pieces of substantive causal knowledge (Tenenbaum & Griffiths,

2003).
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Research on Children’s Causal Learning

We believe that a particular structure-learning algorithm from the fourth

class of models listed above best accounts for at least some kinds of causal

learning in children.  The present experiments are motivated by predictions of

this algorithm.  In order to motivate this particular algorithm, we must first

describe the basic reasoning behind structure-learning algorithms, and state

how they differ from the other three classes of models outlined above.  Further,

we must consider whether previous work on causal learning is consistent with

the prediction of this model and other alternatives.

In the process of learning new causal relations, we often assume that

contingency is an indicator of causality.  However, as any introductory

statistics course teaches, there are problems inferring a causal relation when

we see that event A is simply correlated with event B.  One potential problem is

that a third event, C, might be the common cause of both A and B.  For

example, you may notice that when you drink wine in the evening, you have

trouble sleeping.  Temporal priority (a substantive assumption you bring to the

learning process) would suggest that drinking wine (A) causes insomnia (B).

However, you might also notice that you only drink wine when you go to a

party.  The excitement of the party (C) might cause you to drink wine and to lose

sleep.  This would explain the correlation between wine drinking and insomnia

without concluding a causal relation between them.  Figure 1a and 1b depict

the two potential causal structures that would produce this pattern of

observation.
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Thus, it is necessary to have some way of examining the probability of

events A and B relative to the probability of event C.  Reichenbach (1956)

proposed a natural way of doing this, which he called “screening off”.  To

determine the cause of your insomnia, you must observe the conditional

probabilities of the three events.  If you observe that you only have insomnia

when you drink wine at parties, but not when you drink wine alone, you could

conclude that the parties are the problem.  Likewise, if you observe that you

have insomnia when you drink wine at parties, but not when you abstain at

parties, you could conclude that wine is the problem.  It is also possible that

both factors independently contribute to your sleeplessness.  By examining the

conditional probabilities among these events, you can infer which of the two

causal structures shown in Figures 1a and 1b is more likely.

This kind of reasoning goes beyond simply recognizing the associations

among the three events: it considers the pattern of dependence and

independence among them.  This sort of causal inference from patterns of data

is ubiquitous in scientific reasoning; it underlies many basic statistical and

experimental techniques.  Studies with adults have shown that they are

capable of screening-off reasoning (Cheng & Novick, 1990; Shanks, 1985;

Shanks & Dickinson, 1987; Spellman, 1996).  In the artificial intelligence

literature, powerful causal learning algorithms have been proposed that are

generalizations of this basic logic (Pearl, 1988, 2000; Spirtes et al., 1993,

2001).
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Gopnik, Sobel, Schulz, and Glymour (2001) investigated whether young

children could engage in this form of reasoning.  They introduced children to a

“blicket detector” (see also Gopnik & Sobel, 2000).  The blicket detector lights

up and plays music when certain objects (“blickets”) are placed upon it.  Thus,

the detector presents children with a novel, non-obvious causal property of

objects.  Children were told that the blicket detector was a “blicket machine”

and that “blickets make the machine go”.  Children quickly learned this relation.

Children were then given two conditions.  In the experimental one-cause

condition, two objects (A and B) were each placed on the machine individually.

Children observed that object A activated the machine and that object B did

not.  The objects were then placed on the machine together twice, activating it

both times.  Children were then asked whether each object was a blicket.

In contrast, in a control two-cause condition, the experimenter placed

object A on the machine by itself three times.  Object A activated the machine

each time.  Then the experimenter placed object B on the machine by itself three

times.  Object B did not activate the machine the first time, but did activate it

the next two times.  Again, children were asked whether each object was a

blicket.

In both conditions, object A was associated with the machine’s

activation 100% of the time and object B was associated with the machine’s

activation 66% of the time.  The difference between the conditions was that in

the one-cause condition, the pattern of dependent and independent relations

between the two objects and the machine’s activation should screen off A from
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B as a cause of the detector’s activation.  In this condition, object B only

activates the detector dependent on the presence of object A on the detector.  If

children use screening-off reasoning, then they should categorize only object A

as a blicket in the one-cause condition.  However, in the two-cause condition,

they should categorize both objects as blickets; in this condition, both objects

independently activated the machine – one just does so with greater frequency.

Three- and 4-year-olds, and in a slightly modified version of this experiment,

30-month-olds, behaved in this manner.  Gopnik et al. (2001) concluded that

children could use the pattern of independence and conditional independence

among events to determine screening-off relations.  To do this, they claimed

that children engage in the process of learning causal structure from

observation of events.

An Objection: Associative Models Explain Screening-off Reasoning

However, there are alternative accounts for children’s behavior in Gopnik

et al.’s (2001) screening-off experiments.  These experiments can be described

as a variant of the blocking paradigm (Kamin, 1969), which the Rescorla-

Wagner (1972) associative model was designed to explain.  Children might not

recognize anything about causal structure (i.e., that object A being placed on

the machine causes it to activate and object B being placed on the machine

does not), but instead might choose object A as a blicket simply because it is

more strongly associated with the detector activating.

To test this hypothesis, Gopnik et al. (2001, Experiment 3) examined

whether children would generate a previously unobserved intervention that
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reflected causal knowledge beyond recognizing associations.  Children were

shown two objects (A and B).  Object A was placed on the detector by itself and

nothing happened.  Object A was removed and object B was then placed on the

detector, which activated.  Without removing object B, object A was then placed

on the machine – so that now both objects were on the machine.  Children were

asked to make the machine stop, an intervention they had never observed.

Children used the observed dependence and independence information

correctly to design such an intervention: the majority of the children removed

only object B from the detector.  While this experiment casts doubt that

children simply recognize associations (model class #1 described above), it

says little about the other potential mechanisms.

In the following experiments, we expanded on this basic experimental

technique to further explore children’s causal inferences, and to further

discriminate among potential causal learning mechanisms.  In Experiments 1

and 2, we examined how children made inferences about the effects of an

object based on different pieces of indirect evidence.  These experiments were

designed to suggest that a simple version of the Rescorla-Wagner (1972)

model was a problematic account of children’s causal inference.  In Experiment

3, we present a particular mechanism of causal inference, based on Bayesian

reasoning and substantive causal knowledge.  Experiment 3 is motivated by

the predictions of this mechanism.

Experiment 1
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Experiment 1 investigated children’s ability to make two types of indirect

inferences.  The first is an indirect screening-off inference, which uses a variant

of the Gopnik et al. (2001) procedure.  In Gopnik et al.’s (2001) experiments,

children directly observed that one object activated the detector by itself and

that the other object did not.  A possible objection to Gopnik et al.’s (2001)

study is that children might have simply ignored all the trials in which both

blocks were placed on the machine, and only paid attention to the independent

effects of each object (see e.g., Cheng & Novick, 1992).  Asking children to

make inferences about data they did not directly observe addresses this

concern.

We also presented children with an inference problem based on findings

from the adult reasoning data: backwards blocking.  In studies on backwards

blocking, adult participants observed an outcome occurring in the presence of

two potential causes (A and B).  Participants then observed that event A

independently causes the outcome.  Participants were less likely to judge event

B as a cause of the outcome than those who only observe A and B cause the

outcome together (Shanks, 1985; Shanks & Dickinson, 1987).  Associative

models, such as the Rescorla-Wagner (1972) equation, have difficulty

explaining these data.

Method

Participants. Eighteen 3-year-olds and 16 four-year-olds were recruited

from a university-affiliated preschool and from a list of hospital births provided

by an urban area university.  Two children in the 3-year-old group were
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excluded (see below).  The remaining 3-year-old sample ranged in age from 40

to 48 months (mean age is 44 months).  The 4-year-old sample ranged in age

from 53 to 60 months (mean age is 55 months).  Approximately equal numbers

of boys and girls participated in the experiment.  While most children were from

white, middle class backgrounds, a range of ethnicities resembling the

diversity of the population was represented.

Materials. The “blicket detector” machine used by Gopnik and Sobel

(2000) was used in this experiment.  The detector was 5” x 7” x 3,” made of

wood (painted gray) with a red lucite top.  Two wires emerged from the

detector’s side; one was plugged into an electrical outlet, the other was

attached to a switchbox.  If the switchbox was in the “on” position, the detector

would light up and play music when an object was placed upon it.  If the

switchbox was in the “off” position, the detector would do nothing if an object

was placed upon it.  The switchbox wire ran to a confederate who

surreptitiously controlled whether an object would activate the machine.  The

wire, switchbox, and confederate were hidden from the child’s view.  The

apparatus was designed so that when the switch was on, the detector turned

on as soon as the object made contact with it and continued to light up and

play music as long as the object remained in contact.  The detector turned off

as soon as the object ceased to make contact with it.  This provided a strong

impression that something about the object caused the machine to activate.

Sixteen wooden blocks, different in shape and color, were also used.

The blocks were divided into pairs.  No pair of blocks was the same color or
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shape.  Two white ceramic knobs (approximately 1.5” in diameter) and two

small metal tee-joints (approximately 1.5” in length) were used in the pretest.

Procedure.  All children were tested by a male experimenter with whom

they were familiar.  Children were brought into a private game room and sat

facing the experimenter at a table.  Children first received the pretest used by

Gopnik and Sobel (2000).  Two knobs and two tee-joints were placed in front of

the child.  Children were told that one of the knobs was a “dax” and were asked

to give the experimenter the other dax.  After they responded, children were told

that one of the metal tee-joints was a “wug” and were asked to give the

experimenter the other wug.  The pretest ensured that children would extend

novel names to objects and would interact with the experimenter.

As in Gopnik et al. (2001, Experiment 1), the blicket detector was then

brought out and children were told that the machine was a “blicket machine”

and that “blickets make the machine go”.  Children were then shown two

blocks.  Each was placed on the machine separately.  The first activated the

detector and the experimenter said, “See, it makes the machine go.  It’s a

blicket.”  The second did not activate the detector and the experimenter said,

“See, it does not make the machine go.  It’s not a blicket.”  These

demonstrations were performed twice.  Children were then told that the game

was to “find the blickets”.

Children were then given two training trials.  In these trials, they were

shown two blocks.  One activated the machine, and the other did not.  After

observing each block’s effect on the machine, they were then asked whether
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each block was a blicket.  Feedback was given if children answered questions

during these training trials incorrectly.  The warm-up and training phase

established the idea that individual objects, rather than combinations of

objects, caused the machine to activate, and that these objects were called

blickets.

The test phase of the experiment involved three conditions.  In the

indirect screening-off condition, two objects (A and B) were put on the table.

The two objects were placed on the machine together, and the machine

activated.  This was demonstrated twice.  Then, object A was placed on the

machine by itself and the machine did not activate.  Children were then asked if

each object was a blicket.  Following this, they were asked to “make the

machine go”.  Children were given two trials of this condition.

The backwards blocking condition were identical to the indirect

screening-off tasks, except that when the individual object was placed on the

blicket detector by itself, the detector did activate.  Thus, two new objects (A

and B) were placed on the detector together and it activated.  This was

demonstrated twice.  Then, object A was put on the detector alone and it did

activate.  Children were then asked whether each object was a “blicket”.  After

these questions, children were asked to “make the machine go”.  Children were

also given two trials of this condition.

A straightforward interpretation of the Rescorla-Wagner model states

that the associative strength of object B in the backwards blocking condition is

the same as the associative strength of object B in the indirect screening-off
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condition.  In both cases, the object appeared twice in conjunction with the

other object, and the machine activated on both occasions.  The separate

association or lack of association between object A and the machine’s

activation should be irrelevant.  If children are using a calculation of

associative strength to make their causal inferences, then they should be as

likely to claim that object B in the backwards blocking condition has causal

efficacy (and hence, is a blicket) as object B in the indirect screening-off

condition.  However, if children engage in backwards blocking, similar to adult

participants in previous experiments, then they should not respond in this

manner.

Finally, children were given one trial of a control condition.  In this

condition, children were shown two objects.  Each was demonstrated

individually on the detector.  One activated it; the other did not.  Children were

asked whether each was a blicket.  To be included in the analysis, children

must respond that the object that activated the machine was a blicket and the

object that did not activate the machine was not a blicket.  This was done to

ensure that children had learned to label objects that activated the machine

independently as blickets and those that did not as not blickets.  This was also

done to ensure children were paying attention for the entire session.  None of

the 4-year-olds and two of the 3-year-olds were excluded from the data

analysis for this reason.

In both the indirect screening-off and backwards blocking conditions,

the object that was independently placed on the machine was counterbalanced
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for spatial location across the two tasks (on one task, it was the object on the

left, on the other it was the object on the right).  Across both conditions,

children were first asked whether the object that was placed on the detector

alone was a blicket, and then they were asked whether the other object was a

blicket.  Different pairs of blocks were used for each of the five tasks.  The five

tasks were presented in a randomly generated order with the provision that the

control task was never first.  Thus, in the analyses below, condition is a within-

subject factor, and age is a between-subject factor.

Results

To examine whether there was differences in responses within a testing

session based on order, McNemar’s c2 tests were performed on responses to

the two indirect screening-off tasks and two backwards blocking tasks.  These

tests revealed no significant differences between the responses on either the

“is it a blicket” question or “make the machine go” question on the two tasks in

either condition.  Thus, the data from the two tasks were combined in both

conditions.  Further, initial analyses revealed no effect of order on performance:

children who received a indirect screening-off trial first performed in the same

manner in both conditions as children who received a backwards blocking trial

first.  Finally, there did not appear to be any change in performance across the

session.  Regressions between performance and the order each task was

presented in revealed no significant findings.  Based on these analyses, we

were convinced that there was no effect of order on children’s performance, nor

was there learning within the session.  Table 1 shows responses to the “is it a
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blicket” categorization question for both types of trials.  Likewise, Table 2

shows responses to the “make the machine go” intervention question.

Indirect screening-off condition. On the indirect screening-off tasks,

children observed that objects A and B together made the machine activate,

and then that object A alone did not.  In response to the “is it a blicket”

question, children responded that object A was a blicket on an average of 0.13

out of 2 trials (6% of the time), and that object B was a blicket on an average of

2.00 out of 2 trials (100% of the time), a significant difference: t(31) = 25.18, p <

.0001.  Similarly, on the “make the machine go” question, children placed the A

object on the machine on an average of 0.32 out of 2 trials, while they placed

the B object on the machine on average 1.94 out of 2 trials (97% of the time), a

significant difference: t(31) = 11.60, p < .001.  No age differences were found in

response to either question.

Patterns of individual responses were then analyzed.  In response to

both the “is it a blicket” and “make the machine go” questions, children could

respond in one of four ways.  They could have chosen only object A, only object

B, both objects A and B, or neither objects A or B.  Children never responded

that both objects were not blickets, and they always placed at least one object

on the machine in response to the intervention question.

In response to the categorization question, 4-year-olds chose only

object B at every opportunity.  Thirteen of the sixteen 3-year-olds did so as

well.  Three 3-year-olds chose both objects as blickets on both trials or both

objects on one trial and only object B on the other trial.  There was a non-
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significant trend for the older children to respond in this manner more often

than the younger children: c2(1) = 3.31, p < .07.  Looking at responses over

individual trials, 4-year-olds chose only object B on 100% of the trials.  Three-

year-olds did so on 28 out of 32 trials (87.5% of the time).  On the remaining

12.5% of the trials, they chose both objects as blickets.  Thus, every child

stated that object B was a blicket.  The number of times each child said the A

object was a blicket was analyzed with a Mann-Whitney test, which revealed a

non-significant trend between the 3- and 4-year-olds: U = 104, z = -1.79, p <

.08.

In response to the intervention question, twelve 3-year-olds and thirteen

4-year-olds placed only object B on the machine by itself on both trials, not a

significant difference: c2(1) = 0.18, ns.  Looking at individual trials, the 4-year-

olds placed only the B object on the machine on 28 out of 32 trials (87.5% of

the time).  On the remaining 12.5% of the trials, they placed both objects on the

machine together.  The 3-year-olds placed only the B object on the machine on

26 out of 32 trials (81.5% of the time).  They placed both objects on the

machine on 4 trials (12.5% of the time) and only object A on the machine on 2

trials (6% of the time).  Mann-Whitney U tests revealed that the number of

times children made each of these responses did not differ between the two

age groups1.

Finally, an analysis was done to examine whether children were

consistent in their responses to the categorization and intervention questions

in each presentation.  Children made the same response to the two questions
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on 58 of the 64 trials, significantly more often than all other responses put

together: Binomial test, based on a z-approximation, p < .001.  The most

frequent response was to choose only object B as a blicket, and place only

object B on the machine to activate it.  Across the two ages, children did so on

54 out of the 64 trials (80% of the time), which is significantly greater than all

other responses put together: Binomial test, based on a z-approximation: p <

.001.  Thus, both age groups were able to infer that object B had the causal

efficacy, and were able to make a novel intervention consistent with that

inference.

Backwards blocking condition. On the backwards blocking condition,

children observed that objects A and B together made the machine activate,

and then that object A alone activated the machine.  In response to the “is it a

blicket” question, children categorized object A as a blicket on an average of

1.97 out of 2 trials.  They categorized object B as a blicket on an average of

0.62 out of 2 trials.  This was a significant difference: t(31) = 8.78, p < .001.  A

significant effect of age was also found in their categorization of object B: the

4-year-olds rarely said object B was a blicket (on an average of 0.25 out of 2

trials), whereas the 3-year-olds were significantly more likely to say so (on an

average of 1.00 out of 2 trials): t(30) = 2.82, p < .01.  There was no effect of age

on children’s categorization of object A.  Although this effect of age was

present, both age groups categorized object A as a blicket more often than

object B: t(15) = 4.39, p < .001 for the 3-year-olds, and t(15) = 10.25, p < .001,

for the 4-year-olds.
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Patterns of individual responses were then analyzed in response to both

questions.  As in the indirect screening-off condition, children could respond in

one of four ways in response to both questions.  They could have chosen only

object A, only object B, both objects A and B, or neither objects A or B.

Children never claimed that both objects were not blickets, nor did they fail to

place at least one object on the machine in response to the intervention

question.

In the backwards blocking condition, fourteen of the 4-year-olds chose

only object A as a blicket on both trials.  Only five of the 3-year-olds responded

in this manner, a significant difference: c2(2) = 10.49, p < .01.  Looking at

responses on individual trials, the 4-year-olds chose only object A as a blicket

on 28 of the 32 trials (87.5% of the time).  On the remaining 12.5% of the trials,

they categorized both objects as blickets.  The 3-year-olds categorized only

object A as a blicket on 16 out of 32 trials (50% of the time).  They categorized

both objects as blickets on 15 out of 32 trials (47% of the time), and object B

as the only blicket once (3%).  Mann-Whitney tests revealed that 3- and 4-year-

olds did not differ in their categorization of object A – both age groups often

claimed it was a blicket: U = 120, z = -1.00, ns.  Three- and 4-year-olds differed

in the number of times they categorized object B as a blicket: U = 62, z = -2.83,

p < .01.

On the intervention questions, ten 4-year-olds and seven 3-year-olds

placed only the A object on the machine on both trials – not a significant

difference: c2(1) = 1.13, ns.  However, seven 3-year-olds placed object B on the



Children’s causal 24

machine by itself on at least one of the two trials, while only two 4-year-olds

did so, which was significant:  c2(1) = 3.87, p < .05.  This suggests that when

asked to make an intervention, the 4-year-olds recognize that placing object A

or both A and B on the machine together was efficacious, while the 3-year-olds

were more likely to believe that object B would activate the machine by itself.

Looking at individual trials, the 4-year-olds placed only the A object on the

machine on 23 out of 32 trials (72% of the time).  On seven trials, they placed

both objects on the machine together (22% of the time), and they placed only

object B on the machine on the remaining two trials (6% of the time).  The 3-

year-olds placed only the A object on the machine on 17 out of 32 trials (53%

of the time).  On five trials, they placed both objects on the machine together

(15.5% of the time), and they placed only object B on the machine on the

remaining ten trials (31.5% of the time).  A Mann-Whitney U test revealed that

the 3-year-olds were more likely to place only object B on the detector than the

4-year-olds: U = 85, z = -2.06, p < .05.  Similar Mann-Whitney tests showed no

difference in the other two response types2.

Were children consistent in their answers to the two questions?  If

children engaged in backwards blocking, and categorize object A, but not object

B as a blicket, they should not place object B on the machine in response to

the intervention question.  Children categorized only object A as a blicket on 44

out of the 64 trials (69% of the time).  When they did so, they placed only object

A on the machine in response to the intervention question on 34 of those trials

(77% of the time).  A chi-squared goodness of fit test on these 44 trials
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indicated that the distribution of responses was different from what would be

expected by chance: c2(2) = 38.77, p < .001.  Even when 3-year-olds’ and 4-

year-olds’ responses were considered separately, these findings held.  On the

16 trials in which the 3-year-olds categorized only object A as a blicket, they

placed only object A on the machine on the intervention question on 12 of

those 16 trials (75% of the time).  Of the 28 trials in which the 4-year-olds

categorized only object A as a blicket, they placed only object A on the machine

on the intervention question on 22 of those 28 trials (79% of the time).  Chi-

squared goodness of fit tests revealed that both distributions of responses

differed from what would be expected by chance: c2(2) = 12.50 and 26.64 for the

3- and 4-year-olds respectively, both p-values < .01.

Thus, in the backwards blocking condition, once children observed that

one object activated the machine on its own, they often categorized that object

as the only cause.  This was especially true of the 4-year-olds.  This replicates

the results of studies using adult participants (e.g., Shanks, 1985) and of a

similar experiment using the blicket machine with adults (Tenenbaum, Sobel, &

Gopnik, 2003).  Three-year-olds, in contrast, sometimes categorized the other

object as a potential cause.  It is important to note, however, that even the 3-

year-olds categorized object B in the backwards blocking trials at the level of

chance and not below chance: c2(2) = 1.00, ns.

Comparison between the indirect screening-off condition and backwards

blocking conditions. The Rescorla-Wagner (1972) model predicts that the

associative strength of object B is the same across the indirect screening-off
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and backwards blocking conditions.  Did children treat this object the same

way across the two conditions?  Overall, children categorized object B as a

blicket in the backwards blocking trials less frequently than they categorized

object B a blicket in the indirect screening-off condition: t(31) = 9.34, p < .001.

This was true even when only the 3-year-olds were considered: t(15) = 4.90, p <

.001.  This suggests that the children were not making causal inferences

simply based on associative models, such as the Rescorla-Wagner (1972)

equation.  Rather, these data suggest that children’s causal inferences are

better explained by a different mechanism.

Individual responses were analyzed in a nonparametric fashion to

supplement the parametric analyses above.  Table 3 shows the distribution of

responses on the categorization question between the two conditions.  In

particular, if children made a screening-off inference, then on the indirect

screening-off tasks, they should choose only object B as a blicket on both

trials.  If children made a backwards blocking inference, then on the backwards

blocking tasks, they should choose only object A as a blicket on both trials.

Four of the 16 three-year-olds and 14 of the 16 four-year-olds responded in

exactly this manner.  A McNemar’s chi-squared analysis revealed that children

were more likely to respond in this manner on the indirect screening-off tasks

than the backwards blocking tasks: c2(1) = 6.75, p < .01.  However, when this

analysis was considered across the two age groups, this difference was only

true of the 3-year-olds: c2(1) = 4.90, p < .05.  The older children were equally
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likely to make an indirect screening-off inference as they were to make a

backwards blocking inference.

Discussion

Experiment 1 had several goals.  The first was to examine whether

young children could make a screening-off inference based on indirect

evidence.  In the indirect screening-off condition, children observed that two

objects activated the machine together, and then that one of those objects did

not activate the machine by itself.  From this, they inferred that the other object

had the causal power to make the machine activate.  Further, children’s

interventions paralleled their inferences.  Children observed two instances in

which the experimenter elicited the effect by placing objects A and B on the

machine together.  However, children rarely imitated this response when asked

to make the machine go.  Instead, they generated a novel intervention based on

their causal inference.  This suggests that the mechanism behind children’s

inferential abilities is not one of recognizing associations.

A second goal of Experiment 1 was to see how children responded to a

backwards blocking paradigm.  In this condition, children were shown two

objects that activated the machine together.  Then, one of those two objects

was demonstrated alone, which also activated the machine.  The critical

question was how children would categorize the object that had not been

demonstrated on the machine alone.  Four-year-olds did not categorize this

object as a “blicket”.  Younger children’s responses were less clear: half the

time they categorized the object as a “blicket”, and half the time they did not.
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Responses differed across the two conditions.  Both 3- and 4-year-olds

categorized the object not demonstrated on the detector by itself differently.  In

the indirect screening-off condition, they often claimed it was a blicket.  In the

backwards blocking condition, they were less likely to do so.  This suggests

that they were not simply using the output of the Rescorla-Wagner (1972)

model as an indicator of a causal relation, as this model posits that these two

objects have the same associative strength.

Before we examine the question of whether responses to the backwards

blocking trials discriminate among potential models of children’s causal

learning, we must address a methodological concern with this experiment.  In

every trial in Experiment 1, children were shown two objects – one that activated

the detector and one that did not.  Because of this exposure, children might

have interpreted the “is it a blicket?” categorization question as if it were a

forced choice.  Since children were always first asked whether the object placed

on the detector by itself was a blicket, this might have influenced their

responses in both conditions.  Thus, it is possible that children were making a

much simpler inference: that on every trial, exactly one object was a blicket.  On

the indirect screening-off trials, because object A is clearly not a blicket, object

B must be.  Likewise, on the backwards blocking trials, because object A

unambiguously activated the machine, and clearly was a blicket, under a forced

choice interpretation, object B must not be a blicket.  Experiment 2 explored this

possibility.

Experiment 2
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Experiment 2 replicated Experiment 1 with several modifications to

address the methodological concern above.  First, during the training trials,

children saw three objects at a time, instead of two, and more than one object

activated the machine on each trial.  Thus, the result of the training was that

children learned that more than one object in a trial could be a blicket.  The

indirect screening-off and backwards blocking conditions were similar to

Experiment 1; we also added trials in which the two objects differed in

associative strength, but both clearly activated the machine independently.

This was done by presenting children with two objects that both independently

activated the detector – one just did so more often than the other.  If children

interpreted the “is it a blicket?” question as a forced choice, and answered by

choosing the object with the higher associative strength, then they would

categorize only one of these objects as a blicket.  If they did not interpret this

question as asking them to choose between the two objects, then since both

objects activated the machine independently, both should be blickets.

Given the increased number of trials, pilot work suggested that children

became bored with the procedure if they were also asked to make the machine

go during each trial.  Thus, the intervention question was eliminated, since it

was not relevant to the methodological concern.  Finally, because a

developmental difference between the 4-year-olds and 3-year-olds was found

in Experiment 1, only a 4-year-old sample was considered here.  Since the

younger children did not unambiguously demonstrate backwards blocking, we
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felt it was only necessary to examine an older sample to address this

methodological concern.

Method

Participants. Sixteen 4-year-olds were recruited from a university-

affiliated preschool and from a list of hospital births provided by an urban area

university.  The sample ranged in age from 51 to 63 months (mean age was 58

months).  Approximately equal numbers of boys and girls participated in the

experiment.  While most children were from white, middle class backgrounds, a

range of ethnicities resembling the diversity of the population was represented.

No child had been a participant in Experiments 1.

Materials. The same “blicket detector” as in Experiments 1 was used.

Twenty wooden blocks, different in shape and color, and assembled in the

same manner as in Experiment 1, were also used.  The metallic knobs and tee-

joints from Experiments 1 were also used.

Procedure. After a brief warm-up, children received the same

familiarization, pretest, and introduction to the blicket detector as in Experiment

1.  They then received a single training trial.  Three objects were placed in front

of them.  Each was placed on the machine one at a time.  Two activated it and

one did not, determined randomly.  Children were asked whether each was a

“blicket”.  All children correctly answered these questions.

Children then received four conditions.  The indirect screening-off and

backwards blocking conditions were identical to those in Experiment 1, except

that children were not asked to make the machine go after they categorized
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each object.  Children received two trials of each of these conditions,

counterbalanced for spatial location.  In addition, children received two trials of

an association condition.  In this condition, two objects (A and B) were placed in

front of the child.  Object A was placed on the detector by itself once, activating

it.  Object B was placed on the detector by itself twice, activating it both times.

Children were asked whether each object was a blicket.  If children were treating

the question as a forced choice and choosing the object with the greater

associative strength, then they should choose only object B as a blicket.  If

children were not interpreting the procedure this way, they should categorize

both objects as blickets.3

Finally, children were given a control condition, which was identical to

the training trial.  Three objects were placed on the machine one at a time; two

activated the machine and one did not.  Children were asked if each object was

a blicket.  Children had to correctly categorize the objects that activated the

machine as blickets and the one that did not as not a blicket to be included in

the analysis.  Again, this was done to ensure that children had learned that

only objects that activated the detector individually were labeled “blickets”.  No

children were excluded for this reason.  The seven trials were presented in a

random order, with the constraint that the first trial was never the control.  Thus

in the analyses below, condition is a within-subject factor, and age is a

between-subject factor.

Results
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Initial McNemar’s chi-squared tests revealed no difference between

responses on the two indirect screening-off, two backwards blocking, and two

association tasks.  An analysis similar to that performed in Experiment 1

revealed no effects of order.  Table 4 shows responses to the “is it a blicket?”

question for the three types of tasks.

In the indirect screening-off condition, children never categorized object

A as a blicket.  They categorized object B as a blicket on an average of 1.88 out

of 2 trials.  This is a significant difference: t(15) = 21.96, p < .001.  This

replicates the findings of the previous experiment: children inferred that an

object possessed the causal property even when they did not directly observe

its influence.  Examining individual performance, 14 of the 16 children

categorized object B as the only blicket on both trials, and children responded

in this manner on 30 of the 32 total trials.

In the backwards blocking condition, children always categorized object

A as a blicket.  They categorized object B was a blicket on an average of 0.69

out of 2 trials.  This is a significant difference: t(15) = 6.01, p < .001.  This

replicates the findings of Experiment 1: once 4-year-olds observe an object that

independently activates the machine, they do not postulate the presence of

another cause.  Examining individual differences, nine of the 16 children

categorized object A as the only blicket on both trials, and overall children

categorized only object A as a blicket on 21 out of the 32 total trials.  On the

remaining 11 trials, children categorized both objects as blickets.  A chi-

squared goodness of fit test revealed that this distribution of responses



Children’s causal 33

differed from what we would expect if children were simply answering these

questions at chance: c2(2) = 20.71, p < .001.

Responses to object B in the indirect screening-off and backwards

blocking tasks clearly differed.  Even though these two objects had the same

level of associative strength, children categorized object B as a blicket more

often in the indirect screening-off condition than in the backwards blocking

condition: 94% vs. 34% of the time, respectively, t(15) = -4.54, p < .001.  Of the

sixteen children in the experiment, nine of them chose only object A as a blicket

in the two backwards blocking tasks and only object B as a blicket in the two

indirect screening-off tasks.  Overall, more children chose only object B as a

blicket in the two indirect screening-off tasks than chose only object A in the

two backwards blocking tasks, but this was a non-significant trend:

McNemar’s c2(1) = 3.20, p < .10.

Finally, children showed no difference in their categorization of the two

objects in the association condition.  Overall, children categorized the object

that activated the machine once as a blicket on 1.88 out 2 trials, and the object

that activated the machine twice on 2.00 out of 2 trials.   This was not a

significant difference: t(15) = 1.46, ns.  When children were shown two objects

that each unambiguously activated the blicket detector, they categorized both

as “blickets”.  Looking at individual responses, children categorized both

objects as blickets on 30 of the 32 trials.  This suggests that children did not

interpret “is it a blicket?” as a forced choice question.

Discussion
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The goal of Experiment 2 was to replicate Experiment 1 while controlling

for the possibility that children interpreted the “is it a blicket?” question as a

forced choice.  Responses to the indirect screening-off and backwards blocking

conditions in this experiment paralleled those of Experiment 1.  Further, when

children were presented with cases in which both objects clearly activated the

machine independently, children categorized both as blickets.  Children did not

respond that there was only one blicket on each trial.  This suggests that they

did not interpret the test question as asking for a forced-choice response.

A Structure-Learning Account: Bayesian Inference and Substantive Knowledge

about Causal Mechanisms

The results of Experiments 1 and 2 suggest that children’s causal

inferences cannot be explained by certain models that rely solely on calculating

the associative strength among events, such as the Rescorla-Wagner (1972)

model.  However, there are other associative mechanisms, based on

modifications to the Rescorla-Wagner equation, which can account for

backwards blocking (e.g., Wasserman & Berglan, 1998).  Similarly, rational

parameter estimation models, such as Cheng’s (1997) “power PC” model,

generate a strength parameter that is undefined for the blocked object in the

standard backwards blocking paradigm.  Thus according to Cheng’s model,

children should be uncertain about whether it is a blicket.

These data shed doubt on the possibility that children are simply

recognizing associations (model class #1 described above).  These data also

shed doubt on the possibility that children are using some calculation of
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associative strength based on the Rescorla-Wagner (1972) equation to make

causal inference (a subset of model class #2).  However, these experiments do

not discriminate between other contemporary mechanisms described by #2,

parameter estimation models (#3), and structure learning algorithms (#4).

Tenenbaum and Griffiths (2003) have offered an account of both the

screening off data from Gopnik et al. (2001) and the current backwards

blocking data.  Below, we describe this account and an experimental test of

one of its predictions.  One advantage of this approach is that, to our

knowledge, no other model of causal learning from classes #2, #3, or #4 can

naturally explain these new data.

The model is motivated by an observation from the present and previous

blicket detector experiments.  In these experiments, children make inferences

based on observing a small number of trials involving each object.  This in

itself is a problem for associative models and parameter estimation models.

Associative models typically assume many more observations of data than

the number that occur in these experiments.  For instance, any model based on

the modification of the Rescorla-Wagner equation (models in class #2, such as

Wasserman & Berglan’s [1998] model) does not allow a single positive

association to condition a stimulus to asymptote.  In the backwards blocking

condition, these models do not predict that object A must be a blicket based on

the one time it activated the blicket detector independently.  Parameter

estimation models (class #3) suffer from related problems because they also

rely on frequency data to estimate the relevant probabilities.  In their basic
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version, both the DP and Power PC models produce the asymptotic value of

object A, but an undefined value for object B (see Glymour, 2001).  One

advantage of appealing to certain causal graph structure-learning accounts

(class #4) is that they allow children to integrate information about the prior

probability of particular kinds of causal relations with the currently observed

data.  This machinery supports inferences about causal structure based on

very limited observations – including situations where the direct efficacy of an

object is not observed, such as occurs with object B in both the indirect

screening off and backwards blocking conditions.

As an example, Figure 2a and Figure 2b depict two potential causal

structures consistent with the data in the backwards blocking trial.

Associative models and parameter estimation models begin by assuming a

fixed causal structure – namely Figure 2a – in which either object being placed

on the machine (A and B) is a potential cause of the machine activating (E).

According to these models, 4-year-olds’ responses in Experiments 1 and 2

indicate that their calculation of the strength of the link between B and E is near

zero, or below a threshold level at which objects are labeled “blickets”.

Graphical structure-learning algorithms process the backwards blocking

data in a different manner.  These algorithms do not calculate the strength

values of an established causal structure.  Instead, they use the observed data

to determine what that causal structure is – in this case, whether Figure 2a or

2b is the causal structure.  They can also determine the strength values of the

causal relations represented in the graph.  On this view, the 4-year-olds in
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Experiments 1 and 2 recognized that the more likely causal structure given the

observed data was Figure 2b, and categorized and intervened in that manner.

There are several types of graph structure-learning algorithms (see

Gopnik et al., in press, for a review).  The model we would like to propose –

based on Bayesian inference – starts with a set of hypotheses that could have

generated the observed data.  Figure 2a and 2b represent two such

hypotheses.  Each of those hypotheses is assigned a prior probability.  Given

the data actually observed, the prior probability of each hypothesis is updated

by an application of Bayes’ rule to yield a posterior probability that each

hypothesis is the actual causal structure of the system (for a general reference

to these algorithms, see Heckerman et al., 1995).  However, in order for

Bayesian learning to be effective given such a small set of observations, one

must specifically confine the initial hypothesis space.  Tenenbaum and

Griffiths (2003) describe three assumptions children might use to constrain the

initial hypothesis space.

Assumption 1: Temporal priority.  An object’s position may affect the

detector activating.  However, the detector’s activating does not affect an

object’s position.  Put simply, objects being placed on the machine can cause

the machine to activate, but the machine’s activation does not cause the

experimenter to place an object on the machine.  This assumption constrains

the hypothesis space by eliminating any hypothesis in which the detector’s

activation is the cause of an objects’ position (e.g., E ‡ A or E ‡ B).
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Assumption 2: Object positions are independent.  An object being placed

on the detector does not cause another object to be placed on or removed from

the detector.  This assumption constrains the hypothesis space by eliminating

any hypothesis in which any object’s position causes any other object’s

position (e.g., A ‡ B or B ‡ A).

Assumption 3: The “Activation Law”.  The blicket detector itself

constrains the models to a particular parameterization: the detector operates if

at least one blicket is placed upon it.  Unlike the previous two assumptions,

which constrain what types of hypotheses are considered, this assumption

constrains how all the hypotheses are parameterized.  In particular, this

assumption states that each cause, if present, is fully sufficient on its own to

produce the effect.  Thus, the detector will activate if object A is on the detector

and the hypothesis specifies A ‡ E or object B is on the detector and the

hypothesis specifies B ‡ E (or both).  This activation law could be generalized

to allow for a small level of noise (e.g., situations in which occasionally the

detector fails to activate when a blicket is placed on it), but we consider only the

simpler deterministic case here.  In the previous experiments, this assumption

is consistent with the instructions given to the children (i.e., “blickets make the

machine go”).  In addition, this assumption is consistent with our intuitions

about – and children’s experience with – how most machines work.  In

Experiment 3, however, we presented children with explicit instructions about

this activation law.
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Given these assumptions, Bayesian updating then licenses the

following inferences about the backwards blocking paradigm.  After observing

that objects A and B activate the machine together, the posterior probability

that A is a blicket increases above its prior probability, and similarly for B.

However, after observing that object A alone activates the detector, these

quantities diverge.  The probability that object A activates the machine (and

hence, is a blicket) becomes 1, because otherwise the event could never be

observed.  The probability that B activates the machine returns to its baseline

prior probability, because knowing that A surely causes the machine to activate

makes the compound case, in retrospect, uninformative about the causal

status of B.  In Experiments 1 and 2, the assumption is that this base rate is

relatively low, and the data that the children observe before being asked the test

question in the backwards blocking trial is that approximately 50% of the

objects are blickets.

This reliance on baseline prior probabilities motivates a prediction about

performance on a backwards blocking trial: if the prior probability that an object

is a blicket is high enough and children recognize this high probability, then the

observed data should not be sufficient to justify a strong backwards blocking

response.  Likewise, if the prior is low enough and children recognize this low

probability, then backwards blocking should be strong.  In Experiment 3, we

manipulated the prior probability that objects activated the detector (and hence,

were blickets) to test whether this kind of algorithm can explain children’s

causal learning.  The Bayesian account outlined above predicts a significant
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difference based on this manipulation.  Standard associative models or

parameter estimation models do not: regardless of whether blickets are rare or

common, these models carry out the same computations for both objects in

the backwards blocking paradigm.

Experiment 3

In Experiment 3, children were given a variant of the backwards blocking

task from the previous experiments.  The critical difference was that before

being shown the backwards blocking trial, children were first given a training

phase in which the frequency of blickets was varied – blickets were either rare or

common.  According to the Bayesian model outlined above, if blickets are rare,

then children should reason as in Experiments 1 and 2, and infer that the

uncertain object is not a blicket.  This is because, given the observed data, a

model with only one causal relation should have a higher posterior probability

than a model with two causal relations.  However, if blickets are common, then

participants should reason that the uncertain object is in fact a blicket.  In this

case, the prior probability that the graph shown in Figure 2a is the correct

model should be relatively high.  The resulting posterior probability based on

the observed backwards blocking data should not provide enough evidence to

override the information about the prior probability of the model in which both

objects are blickets.

Thus, this Bayesian approach makes a set of explicit predictions

regarding children’s sensitivity to prior probabilities:
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1) Regardless of whether children were trained that blickets were

rare or common, they should categorize object A as a blicket in

the backwards blocking trial.  Recall that this object

unambiguously activates the detector independently.

2) Children in both conditions will be less likely to categorize

object B as a blicket in the backwards blocking trial than

object A.  The difference between their categorization of objects

A and B, however, will be greater in the rare condition than in

the common condition.

3) Children will be more inclined to categorize objects as blickets

in the baseline trials when blickets are common – that is,

children will recognize that when blickets are rare, fewer

objects are likely to be blickets.  Differences in responses on

the backwards blocking trial will still be significant when this

baseline measure is taken into account.

Method

Participants. Thirty-eight 3-year-olds and 33 four-year-olds were

recruited from two suburban area preschools and from a list of hospital births

provided by an urban area university.  One 3-year-old was excluded because of

experimental error.  Five 3-year-olds and one 4-year-old were excluded for

failing control questions (see below), leaving a sample of 32 children in each

age group.  The 3-year-olds ranged in age from 35 to 47 (mean age 42 months)

and the 4-year-olds ranged in age from 47 to 63 months (mean age 53
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months).  Approximately equal number of boys and girls participated in the

experiment.  While most children were from white, middle-class backgrounds, a

range of ethnicities resembling the diversity of the population was represented.

No child had ever been a participant in any previous experiment in the lab.

Materials. The same “blicket detector” as in the previous experiments

was used.  Eighteen blue wooden cylindrical blocks were used.  These blocks

were held in a 12” x 12” x 4” white cardboard box.  Two smaller 6” x 12” x 2”

white cardboard boxes were also used.  One had the word “Blickets” printed on

it.  The other had the words “Not Blickets” printed on it.  The metallic knobs and

tee-joints from Experiments 1 and 2 were also used.

Procedure. Children were first given the same “daxes” and” wugs”

pretest as in previous experiments.  Children were then introduced to the blicket

detector, by being told that it was a “blicket machine” and that “blickets made

the machine go.”  The box containing the blocks was brought out and children

were told, “I have this whole box of toys and I want to know which are the

blickets.”  Children were randomly assigned to one of two conditions.  In the

rare condition, children were told, “It’s a good thing we have this machine

because only a few of these are blickets.  Most of these are not.  It’s very

important to know which are which.”  In the common condition, children were

told the opposite: “It’s a good thing we have this machine, because most of

these are blickets, but a few of them are not.  Its very important to find out

which are which.”
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Two blocks were then taken out of the box and the experimenter said,

“Let’s try these two”.  The blocks were placed on the machine together and the

machine activated.  The experimenter said, “Look, together they make it go.

Now let’s try them one at a time.”  One of the two blocks was then placed on

the machine and the machine activated.  The experimenter said, “Wow.  Look,

this one makes the machine go by itself.  It’s a blicket.  I have this box and it

says ‘blickets’ on it.  Let’s put the blicket in the blicket box.”  The experimenter

put the block that just activated the machine into the box labeled “blickets”.

The experimenter then said, “Now let’s try this other one.”  The other object was

put on the machine, which did not respond.  The experimenter said, “Wow.

Look, it did not make the machine go by itself.  It is not a blicket.  I have another

box that says ‘Not Blickets’ on it.  Let’s put this one in the ‘Not Blicket’ box.”

The experimenter then did so.

Next, the experimenter said, “Remember, when we did them together –

together they made the machine go.”  This was demonstrated with the two

blocks.  “But that’s because the blicket <hold up the blicket> made the machine

go, but this one <hold up other object> did not make the machine go.”  Each

block was demonstrated individually with their proper effect on the machine.

This was done to make sure that children understood the machine as having

an “or” function: the machine would activate even if only one of the blocks on it

was a blicket.

Two new blocks were taken out of the box and each object was placed

on the machine individually.  After children saw the effects of each object, the
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experimenter asked,  “Where do these go?”  After the child made their response,

the experimenter confirmed it by asking, “Just to make sure, is this one a

blicket/not a blicket?” for each block.  Five such pairs were demonstrated (10

blocks in all).  In the rare condition, only one out of the ten made the machine

go (randomly determined).  In the common condition, nine out of the ten made

the machine go (randomly determined).

After the ten blocks were demonstrated, the machine and box of

remaining blocks were removed from the table.  Children were asked to look at

the “blicket” and “not blicket” boxes.  In the rare condition, children were told

that, “Most of the blocks we saw were not blickets.  A few of them were, but

almost all of the ones we tried were not blickets.”  In the common condition,

children were told the opposite.  This was done to remind children about the

base rate.

Test Phase.  The machine and remaining blocks were then placed back

on the table for the test trials.  In the first trial (backwards blocking), two new

blocks (A and B) were taken out of the box.  The experimenter placed the two

blocks on the detector together, which activated.  Then block A was put on the

detector alone and the detector also activated.  Then, children were asked which

box each block should go into.  If the child said that they did not know, the

experimenter asked the child to take a guess.

After this trial, children were given a baseline trial.  Two more blocks were

brought out; children saw that they activated the machine together.  Children

were then asked into which box these blocks should be placed.  Finally, a
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control trial was done to ensure that children were on task.  Two more blocks

were brought out.  Each was placed on the machine, one at a time.  One made it

go and one did not (randomly determined).  Children were then asked to put the

blocks into the box where they belonged.  If the child did not correctly categorize

these blocks (place the block that made the machine go in the “blicket” box and

the one that did not make the machine go in the “not blicket” box), they were not

included in the analysis.  Five 3-year-olds and one 4-year-old were excluded for

this reason.

Results

In line with the first prediction above, in the backwards blocking trial, all

children placed the block that unambiguously activated the machine alone

(object A) in the blicket box.  Thus, regardless of whether blickets were rare or

common, children’s categorization of the unambiguous object was at ceiling

levels – it was always placed in the blicket box.  Table 5 shows the probability

that children in the rare and common conditions placed the uncertain block in

the blicket box on the backwards blocking trial, the probability that children

placed either block in the blicket box on the base rate trial, and the difference

between those two probabilities.

In line with the second prediction above, categorization of the uncertain

B object on the backwards blocking trial was subjected to an Analysis of

Variance with condition and age group as between-subject factors.  This

analysis revealed that children placed the uncertain B object in the blicket box

more often in the common condition than in the rare condition: 84% vs. 53%,
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F(1, 60) = 9.74, p < .01.  Further, a significant effect of age was found; across

the conditions, more 3-year-olds categorized this object as a blicket than 4-

year-olds: 84% vs. 53%, F(1, 60) = 9.74, p < .01.  Finally, a significant age x

condition interaction was found: F(1, 60) = 6.23, p < .05.

Individual t-tests revealed that on the backwards blocking trial, 4-year-

olds placed the uncertain B block in the blicket box more often in the common

condition than in the rare condition: 81% vs. 25%, t(30) = -3.74, p < .001.

When blickets were rare, children responded that the cause of the machine’s

activation was the block that independently activated the machine.  When

blickets were common, 4-year-olds were less likely to respond in this manner.

Instead, the most probable account was that the B object was a blicket.  Three-

year-olds, in contrast, did not make this distinction.  For the most part, 3-year-

olds categorized the uncertain B object as a blicket, regardless of whether they

were trained that blickets were rare or common: 81% vs. 87% respectively,

t(30) = -0.47, ns.

Two nonparametric procedures were also conducted to examine the

effect of prior probability information on individual response patterns.  First, a

chi-squared analysis was run on children’s pattern of response.  In the 4-year-

old sample, four of the sixteen children in the rare condition placed the B object

in the blicket box in the backwards blocking condition.  In contrast, thirteen of

the sixteen children in the common condition did so: c2(1) = 10.17, p < .001.

Second, a Mann-Whitney U test was performed on the probability that 4-year-

olds would place object B in the blicket box in the backwards blocking trial, and
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either object in the blicket box on the baseline trial.  For the backwards blocking

trial, a significant difference was found between the rare and common

condition: U = 56, p < .01.  This was not the case for performance on the

baseline trial; performance on this trial only showed only a tendency to differ (U

= 80, p < .10).  Similar analyses were run on the 3-year-old sample with no

significant results.  Four-year-olds’ responses demonstrated that they used

the prior probability an object is a blicket in order to resolve the ambiguity of the

backwards blocking trial.

Four-year-olds’ recognition of the prior probability of blickets extended

to the baseline trial.  In the rare condition, 4-year-olds were less likely to

categorize blocks as blickets than in the common condition: 78% vs. 97%,

t(15) = -2.63, p < .05.  This difference alone, however, does not account for the

difference in the backwards blocking trial: in the rare condition, 4-year-olds did

not just put fewer objects into the blicket box, than children in the common

condition.  The difference between the probability that children categorized the

B object as a blicket in the backwards blocking trial and the probability that

children categorized a block in the base rate trial as a blicket differed between

the rare and common conditions: 53% vs. 16%, t(15) = -2.87, p < .01.  This is

consistent with the third prediction above.  The difference in responses between

the rare and common conditions shows that children used information about

prior probabilities to resolve the uncertainty of the backward blocking condition;

the difference in conditions was not due to children simply placing fewer blocks

in the blicket box in the rare condition.
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Discussion

Children were introduced to the blicket detector and given the same

introduction as in the previous experiments.  Children were then trained that the

occurrence of blickets was either rare or common.  The experiment tested

whether children used this information to guide their inferences about the

uncertain information in a backwards blocking condition.  Four-year-olds

seemed capable of using this information: when blickets were rare, they

categorized an object whose causal property was uncertain as not a blicket;

when blickets were common, they categorized the same object as a blicket.

Three-year-olds, however, seemed insensitive to this manipulation of prior

probabilities.  Further, regardless of training, they seemed inclined to categorize

all the objects as blickets, even the ambiguous object.  In this new paradigm,

unlike Experiment 1, they rarely demonstrated backwards blocking.

One goal of this experiment was to examine the predictions of causal

learning mechanisms other than the Rescorla-Wagner (1972) equation, which

were designed to account for the standard backwards blocking paradigm.  The

data from 4-year-olds in the present experiment go beyond the scope of the

predictions of these models.  As far as we know, no associative model or

parameter estimation model takes into account a measure of the prior

probability of the outcome occurring, and uses that information to

disambiguate observed data.  Each model categorizes the causal strength of

an individual object, based on its association or co-occurrence with the effect.

None of these models takes into account the difference in the overall number of
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causes that are present.  Thus, none of these models would predict the

different in responses observed by the 4-year-olds.

A further goal of Experiment 3 was to test the predictions of a particular

Bayesian structure learning account of children’s causal inferences.  Four-

year-olds’ responses – but not those of younger children – were in line with all

of the predictions of this account.  Four-year-olds categorized the object that

unambiguously activated the detector as a blicket, regardless of whether

blickets were rare or common.  Four-year-olds were less likely to categorize

object B as a blicket than object A in both conditions, but this difference was

significantly greater in the rare condition.  Finally, in the baseline trial, 4-year-

olds were more inclined to categorize objects as blickets in the common

condition than the rare condition – but this difference did not account for the

difference in the backwards blocking trial.

In addition to what it means for mechanisms of causal learning, 4-year-

olds’ sensitivity to base rates is interesting in light of recent research on

children’s ability to reason probabilistically.  Some research has suggested

that even adults have trouble with probabilistic reasoning, and often have great

difficulty using base rates in their decision-making (see e.g., Kahneman &

Tversky, 1973).  Previous researchers have also suggested that it is only

around 6-years-old that children can recognize probabilities and use that

understanding to evaluate gambles (Acredolo, O’Connor, Banks, & Horobin,

1989; Piaget & Inhelder, 1975; Schlottman, 2000).  However, this research did

not examine whether children use prior probability information in their
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categorization and causal learning.  Children might be able to do this even if

they were unable to explicitly reason about probabilities or base-rates or use

this information to evaluate gambles.  The present experiment shows that

younger children can, in fact, attend to this information and use it to make

inferences about the causal properties of objects (see also Gutheil & Gelman

[1997] for related results on slightly older children).

General Discussion

Three experiments examined children’s abilities to make causal

inferences based on indirect evidence.  In each experiment, children were

introduced to a “blicket detector” – a machine that activated when certain

objects (“blickets”) were placed upon it.  In the first experiment, 3- and 4-year-

olds were shown two indirect inference problems.  In the first, they were shown

that two objects activated the blicket detector together, and then that one of

those objects did not activate the machine by itself.  Children inferred that the

other object was causally efficacious and labeled it a “blicket”.  Further, when

asked to elicit the effect, the modal response was to place that object on the

machine by itself.  Children did this even though they had never seen this

action previously.  They did not simply imitate the action they had observed

activate the machine.

In the second inference problem, children were tested on a “backwards

blocking” paradigm.  In this task, children observed that two objects activate

the machine together, and then that one of those objects did activate the

machine by itself.  This object was always categorized as a blicket.  The critical



Children’s causal 51

question was how children would categorize the other object.  Four-year-olds

judged that this second object was not causally efficacious.  Younger children,

in contrast, were unclear about the causal status of this object.  A second

experiment replicated this backwards blocking effect on a new group of 4-year-

olds, controlling for a potential methodological problem in Experiment 1.  These

findings demonstrate that retrospective reevaluations in causal inference can

occur not only in a standard backwards blocking paradigm (Shanks &

Dickinson, 1987), but also with many fewer trials and with much younger

learners.

Several classes of causal learning mechanisms may account for these

data.  We propose a model of Bayesian structure learning that uses

substantive prior knowledge to confine and parameterize the initial hypothesis

space.  In Experiment 3, we examined a prediction of this model: when children

observe the backwards blocking data, Bayesian inference allows them to

reason that the probability of the ambiguous object (object B) being a blicket is

a function only of the baseline probability of any object being a blicket.  If that

baseline is high, and children recognize that probability, then they should

categorize the object as a blicket.  If that baseline is low, then they should not

categorize the object as a blicket.  We demonstrated that 4-year-olds, but not

younger children, responded in accordance with the predictions of such an

account.

The results of these experiments suggest that young children can make

inferences about the causal properties of objects even when they do not directly
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observe those properties.  They can also use those inferences to produce new

interventions to elicit causal outcomes, rather than simply imitating the

effective actions of others.  This suggests that children are not simply

associating actions with effects.  In addition, the backwards blocking data

show that the Rescorla-Wagner (1972) model cannot account for children’s

causal inferences.  This is true even if we assume that children are not simply

responding associatively, but are converting measures of association strength

into measures of causal strength (see e.g., Dickinson, 2001).  Moreover, the fact

that young children responded in this way suggests that these backwards

blocking results are not due to extensive experience or education.  Finally, the

results of Experiment 3 go beyond the predictions of other associative

accounts (e.g., Dickinson, 2001; Van Hamme & Wasserman, 1994; Wasserman

& Berglan, 1998) as well as parameter estimation accounts (Cheng, 1997;

Shanks, 1995) of children’s causal learning.  None of these models takes into

account the base rate of causal outcomes.  In Experiment 3, four-year-olds

were quite sensitive to this information.

It is possible that one of these models could be modified, or some other

even more complex associative model could be constructed in a way that

would account for the present data.  However, we believe that the use of a

Bayesian structure-learning algorithm is a better account of children’s causal

inferences.  Experiment 3 provides preliminary, but by no means conclusive,

evidence for such an account.  Further research, should investigate this issue.

For instance, Tenenbaum, Sobel, and Gopnik (2003) have replicated the rare-
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common backwards blocking manipulation on adult learners.  By using adults,

who provide multiple ratings of each object’s causal efficacy (not just whether

each is a blicket at the end of the trial), we can test some of the quantitative

predictions of the Bayesian model.  Indeed, preliminary data suggests that 4-

year-olds and adults seem to make similar inferences.

The Bayesian account suggests that this sensitivity to priors could also

be used to resolve cases in which only ambiguous data is present.  Consider

another follow-up experiment: children are trained that the prior probability of

blickets is rare.  They are then shown three objects (A, B, and C).  A and B

activate the detector together, as do A and C.  Even though all three objects

activate the machine, and there is no direct evidence that A activates the

machine by itself.  The Bayesian model would predict that A would be

categorized as a blicket with greater probability than B and C, which should be

categorized as blickets with equal frequency.  Further, this should still be the

case if children were shown that A and B activated the detector together 10

times, and then A and C activated the detector together once.  These

investigations are currently underway in the lab.  Preliminary data suggest that

children’s responses are in line with the Bayesian model.

This program of research may not only help to elucidate the particular

types of causal learning we describe here but also to help explain other kinds of

conceptual and cognitive change.  In particular, causal learning mechanisms

may play an important role in the development of everyday theories.  Over the

last twenty years a number of investigators have argued that children develop
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theories – coherent, abstract causal models of the world – in a number of

domains including psychology, biology and physics (see e.g., Carey, 1985;

Gopnik & Meltzoff, 1997; Gopnik & Wellman, 1994; Wellman, 1990).

Psychologists have charted changes in those theories over development.

However, we know very little about how these theories are formed or why they

change.  Causal knowledge seems to play a central role in theories, both in

science and in everyday life.  We would speculate that the kinds of causal

learning mechanisms we described here might underpin children’s ability to

learn about many aspects of the world around them.  For instance, Schulz and

Gopnik (in press) have recently demonstrated that children use “screening-off”

reasoning to make inferences about causal relations in psychological and

biological domains, as well as the physical causal relations described in the

“blicket detector” experiments.

The Development of a Causal Learning Mechanism

Three- and 4-year-olds responded differently in Experiments 1 and 3.

Four-year-olds showed substantial backwards blocking, and considered prior

probabilities when making a causal inference.  Three-year-olds showed a

weaker backwards blocking response in Experiment 1, and were insensitive to

priors in Experiment 3.  What accounts for this difference?  Do 3-year-olds use

associative or parameter estimation mechanisms and develop a mechanism

for Bayesian structure learning by age 4?  Or, are all children using Bayesian

inference, but with younger children less able to make strong inferences, due to

either domain-general (e.g., information processing) limitations or insufficient
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domain-specific substantive knowledge (to constraint the hypothesis space)?

The present data are unable to answer these questions.  Three-year-olds in

Experiment 1 did engage in some backwards blocking – they were less likely to

categorize the object not directly placed on the detector as a blicket in the

backwards blocking than the indirect screening-off tasks.  Three-year-olds in

Experiment 1 were also able to generate appropriate interventions, and did not

imitate the experimenter in the indirect screening-off tasks.  Three-year-olds

were also able to make these inferences given a relatively small number of

observations.  All of this speaks against the possibility that Bayesian causal

inference only develops between ages three and four.

One might suggest that the developmental difference in Experiment 3 is

even more striking since children were given explicit training about the

assumptions necessary to engage in Bayesian inference.  They were explicitly

told that blickets make the machine go, were given corrective feedback when

they categorized incorrectly on the training, and were explicitly told about and

given an example of the “the activation law”.  However, from an information-

processing standpoint, Experiment 3 might have been more difficult than

Experiment 1.  Children had to observe and keep track of much more data.  This

might have simply overwhelmed the younger children.  It is possible that a

more sensitive measure would elicit backwards blocking from younger children.

Such a method is currently being explored in the laboratory.

The developmental differences in the present data could be due to

several information-processing factors.  First, to implement the Bayesian
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computations directly, children would have to keep track of multiple

hypotheses and their associated probabilities.  The younger children may

simply not have this capacity.  Second, young children may not use the

assumptions outlined in the discussion of Experiment 2 to constrain their

initial hypothesis space.  For instance, do young children recognize that the

blicket detector operates under an “activation law”?  Three-year-olds might not

recognize there is something about being a “blicket” that makes the machine

go.  Several researchers suggest that children’s knowledge of internal

mechanisms is developing between ages 3 and 4 (Bullock et al., 1982; Gelman

& O’Reilly, 1988; Shultz, 1982).  In Experiment 3, we explicitly pointed out the

activation law to children, but it is not clear that the younger children

necessarily understood this concept.  If 3-year-olds lack this knowledge, it

might not matter if we explicitly pointed out the relationship.  We are currently

exploring this possibility in the lab.

Conclusions

These experiments show that young children can engage in various

kinds of causal inference that involve indirect and/or ambiguous evidence.

Simple associative models are not able to predict children’s inferential abilities.

While it is possible that some more complex associative model could explain

these results, it seems more likely that a mechanism for causal learning will be

found among recent computational models of causal inference, such as the

Bayesian structural inference mechanism we described and tested here.
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Mapping out the development of this inference machinery, and other cognitive

capacities that support it, is an important goal for future research.
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Table 1

Average Number of “Yes” Responses to the “Is it a Blicket?” Question in

Experiment 1

  Indirect screening-off   Backward blocking

Age and object         

3-year-olds:

Object demonstrated alone (A) 0.25 1.94
(0.58) (0.25)

Object not demonstrated alone (B)      2.00 1.00
(0.00) (0.82)

4-year-olds:

Object demonstrated alone (A): 0.00 2.00
(0.00) (0.00)

Object not demonstrated alone (B):     2.00 0.25
(0.00) (0.68)

Notes. Standard deviation in parentheses.  Maximum response is 2.
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Table 2

Average Number of Times Combinations of Objects were Placed on the Machine
in Responses to the “Make the Machine Go” Question in Experiment 1

   Indirect screening-off       Backward blocking

Age and object choice

3-year-olds:

Only object demonstrated alone (A) 0.13 1.06
(0.34) (0.93)

Only object not demonstrated alone (B)     1.63 0.63
(0.72) (0.81)

Both objects together 0.25 0.31
(0.58) (0.60)

4-year-olds:

Object demonstrated alone (A): 0.00 1.44
(0.00) (0.81)

Object not demonstrated alone (B):     1.75 0.13
(0.58) (0.34)

Both objects together 0.25 0.44
(0.58) (0.73)

Notes. Standard deviation in parentheses.  Maximum response is 2.
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Table 3

Distribution of Responses between the Two Conditions in Experiment 1

3-year-olds Backwards blocking

    A on both      B on both    Both on both          
Other
Indirect screening-off

Chose A on both trials 0 0 0
0

Chose B on both trials 4 0 2 6

Chose Both objects 0 0 1
0

on both trials

Other Response 1 0 1 1

4-year-olds Backwards blocking

    A on both      B on both    Both on both          
Other
Indirect Screening-off

Chose A on both trials 0 0 0
0

Chose B on both trials 14 0 2 0

Chose Both objects 0 0 0
0

on both trials

Other Response 0 0 0 0

Notes. A Bayesian structure learning account predicts children will be more
inclined to choose object B in the indirect screening-off than the backwards
blocking condition.  This response pattern is in bold.
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Table 4

Frequency of “Yes” Responses to the “Is it a Blicket?” Question in Experiment 2

Object choice      Indirect Screening-off     Backward
blocking

Object demonstrated alone (A/C) 0.00 2.00
(0.00) (0.00)

Object not demonstrated alone (B/D):     1.88 0.69
(0.17) (0.44)

Object choice        Association

Object with more associative strength (F) 2.00
(0.00)

Object with less associative strength (E) 1.88
(0.17)

Notes. Standard deviation in parentheses.  Maximum response is 2.
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Table 5

Probability that Children Placed the B block in the Backwards Blocking Trial and
Either Block in the Baseline Trial in the Blicket Box across the Two Conditions in
Experiment 3

3-year-olds

Backwards Blocking Trial  Baseline Trial           
            Difference

Rare Condition 0.81       0.94      -
0.13

(0.40)      (0.17)

Common Condition 0.88       1.00      -
0.13

(0.34)      (0.00)

Backwards Blocking Trial  Baseline Trial           
            Difference

Rare Condition 0.25       0.78      -
0.53

(0.45)      (0.26)

Common Condition 0.81       0.97      -
0.16

(0.40)      (0.13)

Notes. Standard deviation in parentheses
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Figure Captions

Figure 1. Two different causal models depicting the relationship between

parties, wine drinking, and insomnia

Figure 2. Two models of the causal structure of the backwards blocking

paradigm from Experiments 2 and 3.
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Endnotes

                                                
1 For both the categorization and intervention questions, these analyses were
supplemented by a Chi-squared analysis.  For the categorization question,
there was a significant difference between the responses of the 3- and 4-year-
olds: c2(1) = 4.27, p < .05.  However, since children never gave two of the four
response types, and since 4-year-olds always choose only object B, we also
analyzed these data using a Fisher Exact test, which was not significant.
Further, analyzing the responses of only the first indirect screening-off trial
also revealed no difference between 3- and 4-year-olds’ performance: c2(1) =
1.03, ns.  For the intervention question, these analyses revealed no significant
differences between the two age groups.

2 For both the categorization and intervention questions, analyses were
supplemented by a Chi-squared analysis.  For the categorization question,
there was a significant difference between the distribution of responses of the
3- and 4-year-olds: c2(2) = 10.64, p < .01. Further, analyzing the responses of
only the first backwards blocking trial revealed a similar finding: c2(1) = 3.87, p
< .05.  For the intervention question, there was a significant difference between
the distributions of responses of the two age groups: c2(2) = 6.57, p < .05,
which also held when only the first backwards blocking trial was considered
c2(2) = 8.23, p < .05.

3 It is possible that these two objects had the same associative strength – if
one trial was sufficient to condition to asymptote.  However, few models ever
make such a parameter setting.  Further, even if this were the case, this
condition would still resolve whether children interpreted the “is it a blicket”
question as a forced choice.


