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Abstract  

We outline a new computational account of learning in children using 

the causal Bayes net formalism. We also present evidence that children as 

young as two years old use something like causal Bayes net learning 

mechanisms to infer the causal structure of the world around them. This kind 

of learning may play an important role in the development of intuitive 

theories. Finally we contrast causal Bayes net and neural net learning 

mechanisms.  



 3 

 

Over the past thirty years we have discovered an enormous amount 

about what children know and when they know it. That research has 

completely transformed the traditional Piagetian view of young children’s 

cognition. Even the youngest infants seem to have abstract representations of 

the world and are not restricted to “sensori-motor” schemas. Similarly, 

preschool children are far from being the illogical, egocentric “precausal” 

creatures Piaget envisioned.  

In particular, young children, and even infants, seem to have intuitive 

theories of the physical, biological and psychological world (for reviews see 

Gopnik & Meltzoff, 1997; Gelman & Raman, 2002; Flavell, 1999; Wellman 

& Inagaki, 1997). These theories, like scientific theories, are complex, 

coherent, abstract representations of the causal structure of the world. Even 

the youngest preschoolers can use these intuitive theories to make causal 

predictions, provide causal explanations, and even reason about causation 

counterfactually (Harris at al . 1996; Hicking & Wellman 2001; Sobel, 2004, 

Wellman et al, 1997). As with scientific theories, children’s theories are much 

more than just summaries of the evidence—they allow children to draw novel 
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conclusions and provide novel explanations. Moreover, there is extensive 

evidence for changes in intuitive theories as children grow older.  

Are these changes the result of maturation or are they the result of 

learning? Several recent findings suggest the latter alternative. First, natural 

variations in the kinds of evidence children receive can influence the 

development of intuitive theories. For example, rich city-dwelling children 

who are relatively deprived of biological experience have a less elaborated view 

of biology than children growing up on Indian reservations (Ross et al. 2003). 

Similarly, children with older siblings, who have a wider range of 

psychological experiences, seem to have an accelerated understanding of 

intuitive psychology (Ruffman et al. 1998). Moreover, training studies show 

that providing children with specific kinds of evidence relevant to biological 

or psychological theories can accelerate the development of those theories 

(Slaughter, 1996; 1999; 2003). Even providing a child with a pet fish can 

influence their folk biology (Inagaki & Hitano, 2004).  

But the real question for developmental cognitive science is not so 

much what children know, when they know it or even whether they learn it. 

The real question is HOW they learn it and WHY they get it right. In the past 

“theory theorists” have suggested that children’s learning mechanisms are 



 5 

analogous to scientific theory-formation. However, what we would really like 

is a more precise computational specification of the mechanisms that underlie 

both types of learning.  

The traditional candidates for learning mechanisms in psychology have 

been variants of associationism, either the mechanisms of classical and 

operant conditioning in behaviorist theories (e.g, Rescorla & Wagner 1972) 

or more recently, the mechanisms of dynamical systems theories (eg. Thelen 

& Smith, 1994) and connectionist theories (e.g. Rumelhart & McLelland 

1986, Elman et al 1997; Shultz, 2003, Rogers & McLelland 2004). Of these, 

only connectionist models really offer computational mechanisms: 

Behaviorism eschews them altogether, while dynamical systems theories claim 

that learning is the result of direct physical interactions between the organism 

and the environment, with no internal computations at all.  

Such theories have had great difficulty explaining how apparently rich, 

complex, abstract, rule-governed representations, the sorts of representations 

encoded in everyday theories, could be derived from evidence. Typically, 

associationist theories, both the earlier behaviorist theories and their recent 

connectionist and dynamic inheritors, denied that such representations really 

exist. Although children might appear to have rule-governed abstract 
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representations of the world, these theorists argue that, in fact, they have a 

collection of much more specific learned associations between inputs and 

outputs.  

Connectionists often qualify this denial by appealing to the notion of 

“distributed” representations, concepts, and categories, or any psychological 

process that relates inputs to outputs. The distributed representation is 

whatever features of the connectionist system produce the relevant outputs 

from the relevant inputs. On this view however, the representations are not 

independent accounts of the external world that are responsible for input-

output relations. Instead, they are summaries of those input-output relations 

Conversely, more nativist theories endorse the existence of abstract 

rule-governed representations but deny that they are learned. Modularity or 

“core knowledge” theorists, for example, suggest that there are a few innate 

causal schemas designed to fit particular domains of knowledge, such as a 

belief-desire schema for intuitive psychology or a teleological schema for 

intuitive biology. Development is either a matter of enriching those innate 

schemas, or else involves quite sophisticated and culture-specific kinds of 

learning like those of the social institutions of science (see eg. Spelke et al . 

1992).  
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This has left empirically-minded developmentalists, who seem to see 

both abstract representation and learning in even the youngest children, in an 

unfortunate theoretical bind. There appears to be a vast gap between the 

kinds of knowledge that children learn and the mechanisms that could allow 

them to learn that knowledge. The attempt to bridge this gap dates back to 

Piagetian ideas about constructivism, of course, but simply saying that there 

are constructivist learning mechanisms is a way of restating the problem 

rather than providing a solution. Is there a more precise computational way to 

bridge this gap? 

To take the computationalist conception seriously, think for a moment 

of children as very, very complex natural robots. We psychologists want to 

explain how those robots learn, much as a computer scientist might want to 

know how a chess playing computer works. The right answer for the computer 

scientist is a description of an algorithm, perhaps in a high level computer 

language. Something like that is what is needed for the developmental 

psychology of learning as well. But that is not what the traditional approaches 

offer. Behaviorists tell us not to even try to explain--just summarize the 

input/output regularities. Dynamical systems theorists tell us to describe the 

physics of the process—-which is much like telling a computer scientist who 
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wants to know how a chess playing computer manages to play chess that she 

should study the physics of silicon chips. Connectionists tell us to try to 

model the neural connections and dependencies that produce chilren’s  

remarkable learning capacities—but to do it without biological data about how 

individual cells act and interact when learning takes place. That is very much 

like telling the computer scientist that to understand how the computer plays 

chess, she needs to reconstruct the machine code—not the high level chess 

playing program.  

Computer scientists learned very quickly that computational 

understanding has levels, and the physical level is useful for building 

machines but not for understanding the details of their behavior, and the 

machine code level is typically unintuitive and unrevealing. But there have 

been few promising theories of learning at the higher computational level that 

is typically revealing in computer science – that is at the level of 

representations and algorithms acting on those representations. 

 

Several recent theoretical and empirical developments suggest that this 

situation may be changing. In particular, recent theoretical advances suggest 

computational learning procedures which allow abstract, coherent, structured 
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representations to be derived from patterns of evidence, given certain 

assumptions. These procedures relate structured representations such as graph 

structures, grammars or representations of three-dimensional space to patterns 

of input, particularly patterns of conditional probabilities among events. 

These computational accounts take the kinds of evidence that have been 

considered in traditional learning accounts – such as evidence about 

contingencies among events or evidence about the consequences of actions --

and use it to learn structured representations of the kind that have been 

proposed in traditional nativist accounts. Accounts like these have become 

increasingly dominant in artificial intelligence and machine learning.  In this 

paper we will focus on one such computational account, the causal directed 

graphical model or causal Bayes net account of causal knowledge and 

learning. 

  

 Causal Bayes Nets. Causal directed graphical models, or causal Bayes 

nets, have been developed in the philosophy of science and statistical 

literature over the last fifteen years (Glymour 2001; Pearl 2000; Spirtes et al. 

1993). “Theory theorists” in cognitive development point to an analogy 

between learning in children and learning in science. Causal Bayes nets 
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provide a formal account of a kind of inductive inference that is particularly 

important in scientific theory-formation. Scientists infer causal structure by 

observing the patterns of conditional probability among events (as in 

statistical analysis) by examining the consequences of interventions (as in 

experiments) or, usually, by combining the two types of evidence.  

In causal Bayes nets, causal relations are represented by directed acyclic 

graphs. The graphs consist of variables, representing types of events or states 

of the world, and directed edges (arrows) representing the direct causal 

relations between those variables (see figure 1). The variables can be discrete 

(like school grade) or continuous (like weight), they can be binary (like 

“having eyes” or “not having eyes”) or many valued (like color). Similarly, the 

direct causal relations can have many forms; they can be deterministic or 

probabilistic, generative or inhibitory, linear or non-linear. The exact 

specification of the nature of these relations is called the “parameterization” 

of the graph.  

 

                    Insert Figure 1 about here 

________________________________________________________ 
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The structure of a causal graph constrains the conditional probabilities 

among the variables in that graph, no matter what the variables are or what 

the parameterization of the graph is. In particular, it constrains the 

conditional independencies among those variables. Given a particular causal 

structure, only some patterns of conditional independence will occur among 

the variables.  

Conditional and unconditional dependence and independence can be 

precisely defined mathematically.  Two variables X and Y are unconditionally 

independent in probability if and only if for every value x of X and y of Y the 

probability of x and y occurring together equals the unconditional probability 

of x multiplied by the unconditional probability of y.  That is p (x & y) = p (x) 

* p (y.).Two variables are independent in probability conditional on some 

third variable Z if and only if p (x, y | z) = p (x | z) * p (y | z).  That is for every 

value x,y, and z of X, Y and Z  the probability of x and y given z equals the 

probability of x given z multiplied by the probability of y given z.  

The structure of the causal graph puts constraints on these patterns of 

probability among the variables. These constraints can be captured by a single 

formal assumption, the Causal Markov Assumption as follows: 
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The Causal Markov Assumption: For any variable X in a causal graph, X is 

independent of all other variables in the graph (except for its own direct and 

indirect effects) conditional on its own direct causes. 

 

Causal Bayes nets also allow us to determine what will happen when we 

intervene from outside to change the value of a particular variable. When two 

variables are genuinely related in a causal way then, holding other variables 

constant, intervening to change one variable should change the value of the 

other. Indeed, philosophers have recently argued that this is just what it 

means for two variables to be causally related (Woodward, 2003).  Given a 

causal graph, particular interventions will only have effects on some variables 

and not others. The Bayes net formalism captures these relations through a 

second assumption, an assumption about how interventions should be 

represented in the graph.  

    

The Intervention Assumption:  A variable I is an intervention on a variable 

X in a causal graph if and only if 1) I is exogenous (that is, is not caused by 

any other variables in the graph) 2) directly fixes the value of X to x and 3) 
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does not affect the values of any other variables in the graph except through 

its influence on X. 

 

Given this assumption we can accurately predict the effects of 

interventions on particular variables in a graph on other variables. In causal 

Bayes nets interventions systematically alter the nature of the graph they 

intervene on, and these systematic alterations follow directly from the 

formalism itself. In particular, when an external intervention fixes the value of 

a variable it also eliminates the causal influence of other variables on that 

variable. This can be represented by replacing the original graph with an 

altered graph in which arrows directed into the intervened upon variable are 

eliminated (Judea Pearl vividly refers to this process as graph surgery (Pearl 

2000)). The conditional dependencies among the variables after the 

intervention can be read off from this altered graph. This same inferential 

apparatus can be used to generate counterfactual predictions. 

A central aspect of causal Bayes nets, indeed the thing that makes them 

causal, is that they allow us to freely go back and forth from evidence about 

observed probabilities to inferences about interventions and vice-versa. 
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These two assumptions, then, allow us to take a particular causal 

structure and accurately predict the conditional probabilities of events, and 

also the consequences of interventions on those events, from that structure.    

 

To illustrate this consider three simple causal graphs ,1) a chain X  

Y Z, 2) a common effect structure Z  X  Y. and 3) a common cause 

structure XZY.  Suppose, for example, that I notice that I often can’t 

sleep when I’ve been to a party and drunk lots of wine, partying (X)  and 

insomnia (Z)  covary, and so do wine (Y) and insomnia (Z). This covariation 

by itself is consistent with all three of the structures above. Maybe parties lead 

me to drink and wine keeps me up, maybe parties both keep me up and lead 

me to drink, maybe parties don’t affect my wine drinking but parties keep me 

up and wine independently keeps me up.  

However, each structure will lead to a different pattern when I 

intervene on wine and partying, if, for example, I experiment by intentionally 

sitting in my room alone and drinking one night, and then partying dead 

sober the next. I can calculate the effects of such interventions on each of the 

three causal structures, using “graph surgery” and predict the results.  I will get 

different results from these experiments depending on the true causal 
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structure (solitary drinking will lead to insomnia, and sober partying won’t for 

graph 1, sober partying will lead to insomnia and solitary drinking won’t for 

graph 2,  and both experiments will lead to insomnia for graph 3).     

Even if I can’t experiment, however, I can still discriminate these three 

graphs by looking at the patterns of conditional probability among the three 

variables.  If graph #1 is right, and there is a causal chain that goes from 

parties to wine to insomnia, then Y  Z  | X  – the probability of insomnia 

occurring is independent (in probability) of the probability of party-going 

occurring conditional on the occurrence of wine-drinking.  If graph #2 is 

right, and parties are a common cause of wine and insomnia, then X  Y | Z  

– the probability of wine-drinking occurring is independent (in probability) of 

the probability of insomnia occurring conditional on the occurrence of party-

going.  

Insomnia might also be a common effect of both wine-drinking and 

parties (X YZ). In this case, X is not independent of Z conditional on Y.  

The intuitions here are less obvious, but they reflect the fact that, in this case, 

knowing about the effect and about one possible cause gives us information 

about the other possible cause. We can illustrate this best with a different 

example. Suppose X is a burglar, Y is the burglar alarm sounding, and Z is the 
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neighboring cat tripping the alarm wire, so that Y is a common effect of X and 

Z. If we hear the alarm sound and see the cat tripping the wire, we are less 

likely to conclude that there was a burglar than if we simply hear the alarm 

sound by itself. Similarly, if partying and wine-drinking really were completely 

independent – if we were just as likely to drink wine at home, then if 

someone else just knew that we had insomnia and that we had been at a party 

that would actually lessen the probability that we had also been drinking wine. 

This effect is called “explaining away”  (see Pearl 2000, Spirtes et al. 1993 for 

discussion).     

 These systematic relations between causation, intervention and 

conditional probability allow a range of systematic predictions. We can also 

use the formalism to work backwards and learn the causal graph from 

patterns of conditional probability and intervention. This type of learning 

requires an additional assumption – the faithfulness assumption.  

 

 The Faithfulness Assumption: In the joint distribution on the variables in 

the graph, all conditional independencies are consequences of the 

Markov assumption applied to the graph. 
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Given the faithfulness assumption, it is possible to infer complex causal 

structure from patterns of conditional probability and intervention (Glymour 

& Cooper, 1999; Spirtes et al., 1993).  Computationally tractable learning 

algorithms have been designed to accomplish this task and have been 

extensively applied in a range of disciplines (eg Ramsey et al. 2002; Shipley 

2000).  In some cases, it is also possible to accurately infer the existence of 

new unobserved variables that are common causes of the observed variables 

(Silva et al. 2003 , Spirtes et al. 2003). 

 These learning algorithms typically take two forms. In Bayesian 

learning, a prior probability for various causal graphs is calculated first 

(Heckerman, 1999). Then these prior probabilities are updated given the 

evidence about the actual conditional probabilities in the data, using Bayes 

rule. In constraint based learning the graphs are constructed from the 

probabilities directly, step by step in a more bottom-up way (Spirtes et al. 

1993). These two types of learning can also be combined.  

The Bayesian methods have the advantage that they can easily integrate 

prior knowledge about the plausibility of various causal structures into the 

learning process.  The disadvantage is that the number of possible causal 

structures rapidly becomes intractable, so that in practice various kinds of 
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greedy search heuristics have to be used. The constraint-based methods have 

the disadvantage that they are less able to constrain search by using prior 

knowledge, but have the complementary advantage that they do not require 

such knowledge. They can also be shown to be asymptotically correct –given 

enough data these algorithms will always yield the right answer about which 

graphs are compatible with that data.    

Causal Bayes net representations and learning algorithms allow learners 

to accurately predict patterns of evidence from causal structure and to 

accurately learn causal structure from patterns of evidence. They constitute a 

kind of inductive causal logic. It is possible to prove that only certain patterns 

of evidence will follow from particular causal structures, given the Markov, 

Intervention and Faithfulness assumptions, just as only certain conclusions 

follow from particular logical premises, given the axioms of logic.  

Causal Bayes nets are also analogous to the representations and 

algorithms that allow the visual system to accurately infer spatial structure 

from retinal patterns—the kinds of representations and deductions captured 

in “ideal observer” theories in vision (Gopnik et al. 2004). The visual system 

implicitly assumes that there is a world of three-dimensional moving objects 

and then makes assumptions about how those objects lead to particular 
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patterns on the retina. By making the further assumption that the retinal 

patterns were, in fact, produced by the objects in this way, the system can 

work backwards and infer the structure of objects from those patterns (see eg. 

Palmer, 1999). Causal Bayes net inferences involve similar assumptions and 

allow similar deductions. Just as the visual system assumes that the patterns at 

the retina were produced by three dimensional objects in a particular way and 

then uses those assumptions to infer the objects from the retinal patterns, 

causal Bayes net assume that causal structure produced patterns of evidence 

and use those assumptions to learn the structure from the evidence. 

Causal Bayes nets, then, provide a way of formally specifying accurate 

inductive causal inferences just as logic provides a way of formally specifying 

accurate deductive inferences and “ideal observer” theories in vision provide a 

way of formally specifying accurate visual inferences. 

 

Causal Bayes nets as a model of children’s causal learning: Empirical 

results.  

This leads to a further question. Do human beings use these kinds of 

ideal rational computations to learn about the world? In vision there is 

extensive evidence that human visual systems are close to ideal observers, and 
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although people sometimes make logical errors, there is also extensive 

evidence that they use logic to draw everyday conclusions. Recently, several 

investigators have suggested that adults’ causal knowledge might involve 

implicit forms of Bayes nets representations (Gopnik & Glymour 2002; 

Rehder & Hastie, 2001; Steyvers et al, 2003; Waldmann; 2001). In particular, 

it turns out that Patricia Cheng’s causal power model of human causal 

learning (Cheng, 1997) is a special case of Bayes net learning, with a particular 

constrained set of graph structures and a particular parameterization 

(Glymour, 2001; Glymour & Cheng 1999). However, Steyvers et al (2003) 

have shown that adults can learn more complex structures, which go well 

beyond the causal power model, particularly, if they are allowed to perform 

interventions.   

Of course, adults have extensive experience and often explicit tuition in 

causal inference. If young children could use versions of Bayes nets 

assumptions and computations they would have a powerful tool for making 

causal inferences. They might, at least in principle, use such methods to 

uncover the kind of causal structure involved in everyday intuitive theories.  

In recent work we have been exploring this possibility by seeing how 

young children use conditional probability and intervention to make 
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judgments about causation (Gopnik, 2000; Gopnik & Sobel, 2000; Gopnik 

& Schulz, 2004; Gopnik et al, 2001; 2004; Schulz & Gopnik, 2004; Sobel et 

al. 2004).  Our basic technique is to present children with novel causal 

relationships, relationships they have never experienced or heard about 

before. Then we present children with carefully controlled information about 

conditional probabilities and interventions and see what causal conclusions 

they draw.   

Two and a half year olds can discriminate conditional independence 

and dependence even with controls for frequency, and can use that 

information to make judgments about causation, at least when the causal 

relations are generative, deterministic and non-interactive. In these 

experiments we showed children various combinations of objects placed on a 

new machine, “the blicket detector”. The blicket detector is a square box 

which lights up and plays music when some combinations or objects, but not 

others are placed on it. The children were told that “blickets make the 

machine go” and were asked to identify which objects were blickets.  

For example, in Gopnik et al, 2001, children saw the sequence of 

events depicted in Figure 2a, and the control sequence depicted in Figure 2b. 

In Figure 2a the effect E (the detector lighting up) is correlated with both A 
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and B. However, E is independent in probability of B conditional on A, but E 

remains dependent on A conditional on B. In Figure 2b each block activates 

the detector the same number of times as in Figure 2a but the conditional 

independence patterns are the same for A and B. Children consistently 

choose A rather than B as the blicket, in the first condition, and choose 

equally between the two blocks in the second condition. Assuming that the 

causal relations are deterministic, generative and non-interactive, a Bayes net 

account would generate a similar prediction.  

                  

Insert Figure 2 about here 

________________________________________________________ 

 

The experiments with two year olds, however, only required that 

children discriminate between conditional probabilities of 1 and <1.  

Moreover, the paradigms could also be explained by the use of a causal form 

of the Rescorla-Wagner associative learning procedure. In fact, you could 

think of the Rescorla-Wagner rule precisely as a procedure that approximates 

the conditional independencies among events in the world that indicate 

causal structure in certain very simple cases.   
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In similar experiments, however, four-year-old children also used 

principles of Bayesian inference to combine prior probability information 

with information about the conditional probability of events. Moreover, they 

did this in a backwards blocking paradigm that is not easily explained by the 

Rescorla Wagner rule (Sobel et al. 2004).  For example, suppose children see 

the sequence of events in Figures 2c and 2d.  On a Bayes net account, the 

causal structure of 2c is plain, A does not cause the effect and B does, and the 

children also say this.  However, the causal structure of 2d is ambiguous, it 

could be that A and B both make the detector go, but it is also possible that 

only A does. Note that, in contrast, on a Rescorla Wagner account the 

associations between B and the detector should be the same in both these 

cases – the independent association or lack of association of A and the 

detector should have no influence.  However, the backward blocking result is 

predicted by Cheng’s model. (Note that this is a case of “explaining away”, 

knowing that the effect was caused by A makes it less likely that it was also 

caused by B.) 

  Indeed, children say that B is a blicket much less often in the 2d 

condition than the 2c condition. However, we can increase the prior 

probability of the “A only” structure by telling the children beforehand that 
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almost none of the blocks are blickets. Children who are told that blickets are 

rare are more likely to choose the “A only” structure – that is to say that A is a 

blicket but B is not.    This is not predicted by either Rescorla-Wagner or 

Cheng models.  

Four-year-olds can also perform even more complex kinds of reasoning 

about conditional dependencies, and they do so in many domains, biological 

and psychological as well as physical. In one experiment children were shown 

a monkey puppet and various combinations of flowers in a vase (see Figure 3) 

(Schulz & Gopnik, 2004). They were told that some flowers made the monkey 

sneeze and others didn’t. Then they were shown the following sequence of 

events: Flowers A and B together made monkey sneeze.  Flowers A and C 

together made monkey sneeze. Flowers B and C together did not make 

monkey sneeze. Children correctly concluded that A would make the monkey 

sneeze by itself, but B and C would not. In a control condition they saw each 

flower make the monkey sneeze with the same frequency, and they chose 

between the flowers at chance. This result can be explained by Rescorla-

Wagner as well as Bayes net models with suitable assumptions, but cannot be 

explained by Cheng’s causal power model.  
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______________________________________________________ 

  Insert Fig. 3 about here 

  
 ______________________________________________________ 
 

Learning from Interventions 

Conditional probability is one basic type of evidence for causation. The 

other basic type of evidence involves understanding interventions and their 

consequences. Look again at the intervention assumption. 

  

The Intervention Assumption:  A variable I is an intervention on a variable 

X in a causal graph if and only if 1) I is exogenous (that is, is not caused by 

any other variables in the graph) 2) directly fixes the value of X to x and 3) 

does not affect the values of any other variables in the graph except through 

its influence on X. 

 

The technical definition of intervention in this assumption may look 

formidable but it actually maps well onto our everyday intuitions about 

intentional goal-directed human actions. We assume that such actions are the 

result of our freely willed mental intentions, and so unaffected by the 
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variables they act on (Clause 1). Clause 2 is basic to understanding goal-

directed action.  When actions are genuinely goal-directed we can tell whether 

our actions are effective: that is whether they determine the state of the 

variables we act upon, and we modify the actions if they are not. Clause 3 is 

essential to understanding means-ends relations. When we act on means to 

gain an end we assume that our actions influenced other variables (our ends) 

through, and only through, the influence on the acted-upon variable (the 

means).  

Moreover, we assume that these features of our own interventions are 

shared by the interventions of others. This is an important assumption 

because it greatly increases our opportunities for learning about causal 

structure – we learn not only from our own actions but also from the actions 

of others.  

There is evidence that this conception of intervention, as freely willed 

goal-directed actions that may be performed by oneself or others, is in place in 

children at least by the time they are 18 months old (Meltzoff, 1996). In 

addition, children can clearly learn from interventions in simple cases. For 

example, they can learn which effects directly follow from their actions in trial 

and error learning. 
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Learning from Combinations of Conditional Probabilities and 

Interventions 

The crucial aspect of causal Bayes nets, however, is that intervention 

and conditional probability information can be coherently combined and 

inferences can go in both directions. Animals have at least some forms of the 

ability to infer conditional probabilities, and even conditional 

independencies, among events -- as in the phenomenon of blocking in 

classical conditioning (Rescorla & Wagner 1972; Shanks, 1985: Shanks & 

Dickinson; 1987).  They also have at least some ability to infer causal relations 

between their interventions and the events that follow them, as in operant 

conditioning and trial- and error learning.  However, there is, at best, only 

very limited and fragile evidence of non-human animals’ ability to combine 

these two types of learning in a genuinely causal way. Why is it that when 

Pavlov’s dogs associate the bell with food, they don’t just spontaneously ring 

the bell when they are hungry? The animals seem able to associate the bell 

ringing with food, and if they are given an opportunity to act on the bell and 

that action leads to food, they can replicate that action. Moreover, there may 

be some transfer from operant to classical conditioning. However, there is no 

evidence that animals can go directly from learning novel conditional 
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independencies to designing a correct novel intervention. Moreover, 

surprisingly primates show only a very limited and fragile ability to learn by 

directly imitating the interventions of others, an ability that is robustly present 

in one-year-old humans (Povinelli, 2000: Tomasello & Call, 1997). 

In contrast, we’ve shown that very young children solve causal problems 

in a way that suggests just this coordination of observation and action. 

Preschool children, for instance, can use contingencies, including patterns of 

conditional independence, to design novel interventions to solve causal 

problems. Three-year-olds in the blicket detector experiments use information 

about conditional independence to produce appropriate interventions (such 

as taking a particular object off the detector to make it turn off) that they have 

never seen or produced before (Gopnik et al., 2001).   

Even more dramatically, four-year-olds used patterns of conditional 

dependence to craft new interventions that required them to cross domain 

boundaries, and overturn earlier knowledge (Schulz & Gopnik, 2004). For 

example, children were asked beforehand whether you could make a machine 

light up by flicking a switch or by saying  “Machine, please go”. All of the 

children said that flicking the switch would work but talking to the machine 

would not. Then children saw that the effect was unconditionally dependent 
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on saying “Machine, please go”, but was independent of the switch 

conditional on the spoken request. When children were then asked to make 

the machine stop 75% said “Machine, please stop”. Moreover, these children 

were more likely to predict that a new machine could be activated by talking 

to it than a control group of children. 

Note that this cross-domain result is particularly difficult to explain 

using the apparatus of either associationist or nativist theories. Children 

clearly had built up very strong associations and had extensive experience with 

the within-domain causal relations. On nativist accounts one of the most 

characteristic aspects of core knowledge is that inferential principles are 

restricted to particular domains. Yet children overrode these associations and 

principles after only a few presentations of the relevant causal evidence -- 

evidence that definitively pointed to cross-domain causal relations. 

Most crucially, however, four-year-olds can also combine patterns of 

conditional dependence and intervention to infer causal structure and do so 

in a way that recognizes the special character of intervention (Gopnik et al., 

2004). This kind of inference is naturally done by Bayes nets and is not a 

feature of either associationist or causal power accounts of causal learning. 

Children can even do this when the relations between the events are 



 30 

probabilistic rather than deterministic. And children can use such 

combinations of information to infer the existence of unobserved variables.  

For example, we showed four-year-olds a novel “puppet machine” in 

which two stylized puppets moved simultaneously. They were told that some 

puppets almost always, but not always, made others go. In one condition they 

saw the experimenter intervene to move puppet X, and puppet Y also moved 

simultaneously on five of six trials. On one trial the experimenter moved X 

and Y did not move. In the other condition they simply observed the puppets 

move together simultaneously five times, while on one trial the experimenter 

intervened to move X and Y did not move. The covariation between X and Y 

was the same in both cases. However, children accurately concluded that X 

made Y move in the first case, while Y made X move in the second. Again 

these results would not be predicted either on an associationist or causal 

power account, but follow directly from Bayes net assumptions. 

Similarly, children could use the pattern of interventions and 

covariation to normatively infer an unobserved variable that was a common 

cause of two observed variables. Children were again shown the puppet 

machine but now they saw the two objects move together several times, and 

then saw the experimenter intervene to move the puppets. In one condition, 
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like the condition described above, the experimenter moved X and Y did not 

move. When asked to explain why the puppets moved together children said 

they did so because Y moved X. In the unobserved condition the 

experimenter intervened on both puppets. When she intervened on X, Y did 

not move, when she intervened on Y, X did not move. When children were 

asked to explain why the objects moved together they said that they did so 

because of some hidden factor.  Moreover, adults referred to a hidden 

structure even when the relations between the puppets were probabilistic, and 

they discriminated among different hidden structures (Kushnir et al. 2003). 

We have some preliminary evidence that children may behave similarly.   

In even more recent work we have shown that four-year-old children 

could also use a pattern of interventions and covariation to normatively infer 

more complex structures, in particular, to distinguish a causal chain from a 

common effects structure from a causal conjunction (Schulz & Gopnik, 

2003). We showed children another new machine -- the gear-toy. The gear-toy 

consisted of two gears with a switch on the side. When you flicked the switch 

the gears moved together. This simple machine could involve (at least) four 

different causal relations between the gears, the switch could make A go 

which could make B go, the switch could make B go which could make A go, 
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the switch could independently make A go and make B go, or the switch and 

A together could make B go and vice-versa. We showed children different 

patterns of intervention on the gears and the switch, and pictures 

representing the different causal relationships (basically cuter versions of 

causal graphs with smiling gears pushing each other instead of letters and 

arrows). Children appropriately picked the right picture from the evidence, 

and, given the pictures, they could correctly infer what pattern of evidence 

would result. 

Our empirical work so far has looked at a relatively limited range of 

causal inferences. Our causal structures involved at most three variables and 

the variables were simple discrete two-valued variables. Children only had to 

discriminate between conditional probabilities of 1 vs < 1.  The causal 

relations were generative and for the most part (with the exception of the gear 

toy conjunctions) they were not interactive.  

In other experiments we have shown that four-year-old children will 

infer inhibitory relations between two variables, and they will discriminate 

more finely among different degrees of probabilistic strength between two 

variables. In particular children say that an a object that sets off the blicket 

detector two out of three times has stronger causal powers than one that sets 



 33 

off the detector only one out of three times (Kushnir & Gopnik, in press). We 

have not yet shown whether children can infer more complex causal structure 

when the causal relations have these sorts of parameterizations. 

    Causal Bayes nets do allow such inferences, and allow inferences 

about much more complex structures involving multiple variables with 

multiple parameterizations. Moreover, they allow inferences from pure 

covariation as well as from interventions. Most of our experiments involved a 

combination of observation and intervention, rather than just observations 

per se.  Children’s causal learning mechanisms almost certainly involve a 

more restricted subset of the general causal Bayes nets methods, though we 

don’t yet know the limit of that subset.  

For example, it may be that children assume that causal relations are 

fundamentally deterministic with a single “error term”, an assumption that 

requires interventions to infer complex structure. They may be more closely 

analogous to, say, experimental chemists who can infer causal structure from a 

single experiment, than to epidemiologists who infer causal structure from big 

statistical databases.   
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Moreover, the youngest children in our experiments were 2 1/2 and 

most of the children were three or four. We don’t know how far back these 

learning capacities go, and whether, for example, they are present in infancy.    

Nevertheless the learning capacities we have demonstrated in children 

extend well beyond those predicted by any other theory of causal learning, In 

our experiments we carefully controlled the apparatus so that were no spatio-

temporal or mechanical cues that discriminated causal structure. And, as we 

note above, although individual experiments might be explained by 

associationist or causal power theories many of the experiments (the prior 

knowledge backwards blocking experiment and the puppet machine and gear 

toy experiments, in particular) are not easily explicable by either of these 

theories.  

Causal Bayes nets and connectionism. 

How are causal Bayes nets related to other theories of children’s 

learning, particularly connectionist or neural net theories?  

Neural nets and Bayes nets are very similar as formal mathematical structures, 

but they have been developed and are typically applied to different purposes 

in conjunction with quite different algorithms. (see Table 1) 
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Formally, Bayes nets are akin to a kind of feed-forward neural net, but 

there are differences as well. Both Bayes nets and neural nets have the same 

graphical structure, they consist of nodes (units) that are connected by arrows 

(connections). The characteristic Markov property (or the extended version of 

that property called d-separation) is shared by both Bayes nets and neural nets. 

However, not all Bayes nets assign weights to individual node-to-node 

connections (arrows), and, in Bayes nets , unlike neural nets, different weights 

may be assigned for different values of the parent nodes. Some recurrent 

neural nets that satisfy the d-separation property (Pearl, 1988) are likewise 

cyclic Bayes nets, and vice-versa (Spirtes, et al., 2000).  

The most important differences involve the semantics of the models, 

differences that also influence the accompanying algorithms. Nodes in Bayes 

nets almost always have an external reference; representation is not 

distributed. Instead the individual nodes in Bayes nets represent individual 

variables in the external world, and the individual connections represent 

individual causal links among those variables.  Even the hidden nodes that 

represent unobserved variables in Bayes nets denote external properties, 

features or relations that could be observed in principle.  
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This contrasts with typical neural net models. In these models input 

and output variables refer to entities outside the network, but individual 

hidden nodes and connection weights do not.  A group of hidden nodes, 

their connections and weights, may indirectly represent some aspect of the 

external world, but these representations are distributed. Nodes and arrows 

(that is, neural units and connections) do not directly map to individual 

variables and causal relations in the world, as they do in causal Bayes nets. 

Also unlike typical neural net models, Bayes nets do not distinguish 

input from output nodes—they are all on the same footing. This enables them 

to flexibly account for inferences in many directions, including inferences 

from outputs to inputs as well as the other way around. In this way Bayes net 

algorithms can not only generate predictions, they can also use the same 

apparatus to generate counterfactuals and explanations.  

There are several different kinds of algorithms for inference and 

learning associated with Bayes nets. One set of algorithms presuppose a fixed, 

parameterized Bayes net. The algorithms can be used to update the probability 

of all nodes given values of any subset of nodes, and thus to predict the values 

of some nodes from the values of others. Feed-forward neural nets typically 
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provide a more restricted form of such updating, confined to predicting 

output from input values.  

A second set of algorithms updates probabilities for all nodes given 

external interventions. As noted above interventions in causal Bayes Nets 

force variables to take a particular value or force a probability distribution on 

one or more nodes. The same set of algorithms can be used to generate 

certain kinds of counterfactual claims. At least as currently formulated, neural 

net models do not distinguish interventions and counterfactuals from 

predictions in this way.  

Similarly, unlike neural net models of the kind developed so far, the 

links in causal Bayes nets have an intervention interpretation. Assume we 

know the network and the joint probability distribution in the objective 

system the network models. Then we can compute the probability distribution 

that will result from an external manipulation of a variable represented in the 

network – we can compute what will happen if we intervene on that system in 

a particular way. In fact, this is precisely what makes causal Bayes nets causal. 

Neural net models do not interpret the connections between nodes in this 

way. 
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In a nutshell: in a neural net psychological model, the hidden nodes, 

linkages and weights are about psychology or, were the model biologically 

serious, about specific nerve cells or complexes and their connections.  But 

they are not directly about the world outside the organism – they do not 

individually represent variables in the world or causal relations between them. 

The functional input/output relations and the “distributed representations” 

are about the world and about psychology.  In a causal Bayes net, everything is 

about the world (right or wrong). As a psychological model, Bayes nets 

represent what the subject thinks about the world. 

 

Given this basic semantic difference there are several ways in which 

Bayes nets modeling and classical neural net modeling might be considered as 

complementary rather than competitive. Perhaps the most obvious is that, as 

we are applying them here at least, the two formalisms involve different levels 

of description. We think of Bayes nets as what Marr (1982) called a 

“computational” level of description, in the same way, that in vision science 

the geometric relations between two-dimensional  projections  and three-

dimensional objects involve a computational levels of representation. In 



 39 

principle, these sorts of computations might be implemented at a lower level 

by a neural net.      

          In our work Bayes net models are intended to describe what and how 

children think as they learn about causal relations and use that knowledge. 

We have no doubt that ultimately children do this by means of neural 

synaptic connections, though we have little idea how the brain performs this 

or other high-level computations. What is needed is a kind of neural 

compiler—in the computer science sense—which would show how these 

representations and algorithms could be carried out by specific actual nerve 

cells or complexes through their synaptic connections. That kind of problem 

seems fundamental for a unified account of brain and mind, and will depend 

on interdisciplinary work by computer scientists, neuroscientists and 

psychologists (see eg. O’Reilly & Munakata, 2000).  

Part of the appeal of neural net models is the sense that the “ultimate” 

theory must be such a model--but such a theory will need to be accompanied 

by a compilation theory for higher order cognitive functions. One way of 

viewing contemporary neural net models of psychological functions is that 

they are surmises about features of such a compiler. So understood, 

explaining how the causal inferences revealed in our experiments and 
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captured by the causal Bayes net formalism could be implemented in the 

brain represents a challenge to neural net modeling.  

Very recently, Rogers and McLelland (Rogers & McLelland, 2004) have 

taken up this challenge to model several features of our data with particular 

types of neural net simulations. One thing that children (and adults) do in 

causal inference is to make predictions about novel patterns of contingencies 

among events, based on their experience of past contingencies. In our first 

studies, for example, children predict that the yellow but not the blue block 

will now make the detector go. Rogers and McLelland show that these 

predictions can be modelled by a sequential neural net, and they suggest ways 

in which such a net could be derived from a particular set of learning 

experiences. One might interpret these simulations as a hypothetical 

implementation of at least some aspects of Bayes net computations.      

On the other hand, these models do not, as yet, capture several other 

important features of Bayes net inferences and of our data. Our experiments 

show that children distinguish passive associations between variables from 

associations produced by external interventions on one or more variables, and 

in simple cases use that different information in a way that accords with 

causal Bayes net principles. They show that children will, from such data, 
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correctly infer the existence of unobserved common causes acting on two 

variables. They show that children will, from learned causal relations, correctly 

(both objectively correctly and correctly according to causal Bayes net 

representations) infer the effects of interventions they have never before seen. 

Further, they do all of these things from a quite small collection of samples.  

It would be a step forward if neural net theorists were able to further 

extend models of the kind described in Rogers and McLelland smoothly to 

accommodate these phenomena.  Such models could be thought of in both 

Bayes net and neural net terms and the explanatory power of such models 

could come from both sources. 

A second way in which the two types of theories may be complementary 

concerns the developmental trajectory and origins of Bayes net learning 

mechanisms. As we noted above the youngest subjects in our studies so far 

were 2 1/2 years old. We suggest that the learning mechanisms we have 

discovered are responsible, at least in part, for the sort of developmental 

changes in intuitive theories that we see in the preschool years. But this leaves 

open the question of where the learning mechanisms themselves come from.   

It is possible that the learning mechanisms we see in these children, 

with their characteristic links between contingency, causation, intervention 
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and explanation, are in place innately. On the other hand it is also certainly 

possible that these mechanisms are themselves derived from an earlier history 

of experience.  A neural net that could be extended to implement the full set 

of Bayes net predictions would presumably be derived from some particular 

set of experiences – some learning history. Again, Rogers and McLelland 

suggest some ways that a net might be constructed from a certain learning 

history that could simulate some, though not all, of the causal inferences a 

Bayes net system would make and our children do make. The further 

empirical question becomes whether children, in fact, experience that kind of 

learning history.  

A third way that the two systems may be complementary is simply that 

they model different types of knowledge and learning.  The kinds of causal 

learning that are well-modeled by causal Bayes nets are powerful and general 

but they are still specific to the domain of causality. There are many other 

kinds of learning, and there may be many kinds of learning mechanisms, just 

as the algorithms involved in vision are very different from those in audition.    

Consider, for example, the contrast between the baseball knowledge of 

Billy Beane, the general manager of the Oakland A’s and that of Barry Bonds, 

the star hitter of the rival San Francisco Giants. Even Noam Chomsky and 
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Steven Pinker would agree that baseball knowledge is not likely to be the 

result of a dedicated innate module, so it must have been learned. Both Billy 

and Barry have complex motor representations that allow them to take the 

input of a ball pitched in a certain location with a certain velocity, and 

translate that information into muscle output that will have a particular effect 

on the ball. Both also have basic causal knowledge of how baseball works.  

Barry, over literally hundreds of thousands of trials, has honed and 

perfected that motor knowledge to the point where he can hit (or decide not 

to hit) virtually any kind of pitch that is thrown at him. The computations 

that allow him to make these decisions in a split second must be of staggering 

complexity and subtlety.  Billy, in contrast, never made it to the majors.  

Billy, however, understands the full complex causal structure that 

relates the various skills and actions of a roster of forty or so players to a 

particular outcome variable – winning pennants.  Billy’s causal knowledge 

allows him to predict the outcomes of particular decisions and interventions 

(encouraging walks, avoiding steals, hiring college rather than high-school 

players, trading players as they become stars) on winning. It also allows him to 

provide explanations of those outcomes (over a long season on-base 

percentage causes the maximum number of wins), and to consider the 
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outcomes of counterfactuals (if only Jeremy Giambi had slid they would have 

won the playoff against the Yankees, if they had retained Miguel Tejada they 

would have done no better this year).   

Barry can modulate his motor output to fit his perceptual input better 

than anyone who has ever lived. But when it comes to explanations and 

counterfactuals, about the best he can come up with is the classic baseball 

restatement of phenomenology “I was seeing the ball well” or “I’d have hit 

better if I’d been seeing the ball well”. Similarly, while Barry can adjust his 

swing to changing circumstances he is unlikely to know beforehand what the 

consequences of interventions on that swing are likely to be. He may be able 

to experience a change of stance, say, and adjust to its effects, but he won’t be 

able to say beforehand what that effect will be. In so far as Billy’s 

representation of the causal structure of baseball is indeed accurate, he will be 

able to plan effective interventions a priori. His most important decisions, in 

fact, are made before each season starts. 

Barry, aside from what must be staggering natural neural connectivity, 

has learned his skill the Carnegie Hall way, practice, practice, practice, by 

taking on feedback from thousands of trials. Note that unlike Barry, however, 

Billy has only had a few trials to predict the outcome, and he can’t afford to 
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make adjustments only after the play-off feedback has been provided. Instead 

he infers causal structure by collecting massive amounts of statistical data and 

considering the results of experiments (such as the failed five closer rotation 

in Boston).  

Similarly, there is no matter of fact, about whether Barry Bonds neural 

representations are wrong or right, Barry’s sensori-motor knowledge doesn’t 

seem accurately described as being true or false and it “represents” the causal 

structure of baseball only in a very indirect way. Billy’s causal claims about 

baseball do have that character (and many have been hotly debated).    

It should be obvious by now that Barry’s skills seem well suited to a 

process of connectionist modeling, while Billy’s seem more suited to a causal 

Bayes net representation. This is consistent with the applications of 

connectionism, and dynamic modeling more generally. These ideas have been 

most effectively applied to the learning of such classification skills as 

handwriting recognition or indeed to skilled motor learning in adults or in 

children.  

This contrasts with learning the kind of causal knowledge that 

underwrites intuitive theories. That kind of learning allows explanation, 

intervention and counterfactuals as well as prediction. It can be learned in a 
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few trials rather than hundreds or thousands. It seems better modeled by the 

new formalisms.  At least when they are constructing intuitive theories 

children seem more like Billy than Barry. 

Until recently, it has seemed that connectionist learning was the only 

computational game in town – the alternative was some form of innate 

triggering, a faintly mystical faith in constructivism, or a vague analogy to 

scientific induction. Causal Bayes nets and related learning mechanisms may 

supplement rather than replacing connectionist ones. But they still make it a 

whole new ball game.     
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Figure Titles 

Figure 1: A causal graph 

Figure 2: Screening-off and backwards blocking  

Figure 3: Biological screening-off
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Figure 2: Screening-off and backwards blocking 

 

 

2a) One-Cause Condition

2b) Two-Cause Condition

Both objects activate 
the detector 

(Demonstrated twice)

Children are asked if 
each one is a blicket

Screening-off Procedure (Gopnik, Sobel, Schulz & Glymour, 2001)

Object A activates the 
detector by itself

Object B does not 
activate the detector 

by itself

Object A activates the 
detector by itself 

(Demonstrated three 
times)

Object B does not 
activate the detector 

by itself 
(Demonstrated once)

Object B activates the 
detector by itself 

(Demonstrated twice)

Children are asked if 
each  one is a  blicket
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2c) Inference 
C diti

  

2d) Backward Blocking 
C diti
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the machine go
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the machine go
 

Backwards Blocking Procedure (Sobel, Tenenbaum, & Gopnik, 2004) 
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Figure 3: Screening-off in a biological task. (Schulz & Gopnik, 2004) 

 

Test Condition: Children see that the red and yellow flowers together make 

Monkey sneeze and that the blue and yellow flowers together make Monkey 

sneeze, but that the red and blue flowers together do not make Monkey 

sneeze. 

 

 

 

 

 

Control Condition: Children see identical frequency information but each flower is 

presented singly; the red and blue flower each make Monkey sneeze half time; the yellow 

flower makes Monkey sneeze all the time. 
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In each condition, children are asked which flower makes the Monkey sneeze.  Children 

choose the yellow flower in the test condition but choose at chance in the frequency 

control  
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  Table 1 

 

 

Feature Neural Network Bayes Network 

Graph Directed Graph Directed Graph 

Vertices Random Variables Random Variables 

Vertex function Of Parent Variables in 

the Graph 

Of Parent Variables in 

the Graph 

Constraints on the Joint 

Probability Distribution 

on the Vertices 

None D-separation 

Cyclic Graphs Allowed Yes Yes 

Distinguished Input and 

Output Variables 

Yes No 

Associated Theory of 

Interventions 

No Yes 

Graph Structure 

Estimation by 

Heuristic Pruning Asymptotically Correct 

Search (Bayesian or 

Constraint Based) 
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Parameter Estimation by Variety of iterative 

methods, e.g., back-

propagation 

Maximum likelihood or 

Bayesian posteriors 

Interpretation of 

Vertices 

None, or as 

representations of  

“internal” Objects (e.g., 

nerve cells) 

Representations of 

Variable Properties of 

“external” Systems 

Usual Data Application Classification  Causal and Statistical 

Modeling 
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